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PREFACE.

Readers of the Life of Sir William Rowan Hamilton will

recollect that he undertook the publication of a book on

quaternions to serve as an introduction to his great volume

of Lectures. This Manual of Quaternions was intended to

occupy about 400 pages, but while the printing slowly pro-

gressed it grew to such a size that it came to be regarded

by its author as a " book of reference " rather than as a

text-book, and the title was accordingly changed to The

Elements of Quateimions. By a curious series of events

one of Hamilton's successors at the Observatory of Trinity

College has felt himself obliged to endeavour to carry out to

the best of his ability Hamilton's original intention. And on

the centenary of Hamilton's birth a Manual of Quaternions is

offered to the mathematical world.

Last year I was called upon by the Board of Trinity College

to assist in the examination for Fellowship. I had long ago

recognized that another work on quaternions was required,

and this want was forciblj^ brought home to me by my new
duties. A mathematician, whose time is limited, is frightened

at the magnitude of Hamilton's bulky tomes, although a closer

acquaintance with the Elements would reveal the admirable

lucidity and the logical completeness of that wonderful book,

and although the Lectures have a charm all their own. The

student wants to attain, by the shortest and simplest route, to

a working knowledge of the calculus; he cannot be expected

to undertake the study of quaternions in the hope of being

rewarded by the beauty of the ideas and by the elegance of

the analysis. And for his sake, though with reluctance I

must confess, I have abandoned Hamilton's methods of

establishing the laws of quaternions.

158427



vi PREFACE.

By a brilliant flash of genius Hamilton extended to vectors

Euclid's conception of ratio. A quaternion is the mutual

relation of two directed magnitudes with respect to quantity

and direction as a ratio is the mutual relation of two

undirected magnitudes with respect to quantity. From this

enlarged view of a ratio, the calculus of quaternions is deve-

loped in the Elements. But the way is long and winding,

and after much labour, I found I could not greatly shorten it or

make it much less indirect. I therefore adopted another plan.

The two cardinal functions of two vectors are Sa/3 and

Ya/3. These functions may be defined by the statements

that —Sa^ is the product of the length of one vector into the

projection of the other upon it, and that Ya^ is the vector

which is perpendicular to a and to '

/3, and which contains

as many units of length as there are units of area in the

parallelogram determined by a and /3. Both these functions

enjoy some of the properties of an algebraic product. They
are distributive with respect to each of the vectors. I

The product of the vector a into /S may be defined to be J

the sum of these functions,

This is a quaternion—the sum of a scalar and a vector. A
product of a pair of vectors is distributive but not commuta-
tive. It is now necessary to define the product of a quaternion

iq) into a vector (y), and we say that it is the sum of the

product of the scalar (Sq) into y and the product of the

vector (Vq) into y, or that

g.y= Sg.y-hVg'.y.

From these principles it follows almost immediately that quater-

nion multiplication is associative as well as distributive.

Division is seen to be deducible from multiplication, and
on p. 12 we arrive at the important result that every function

of quaternions formed by ordinary algebraic processes is a

quaternion, scalars and vectors being considered to be special

cases.

What we may call the grammar of the subject may be said

to terminate on p. 20, the laws of combination of quaternions

having been established, the five special symbols S, V, K, T and U



I

PREFACE. vii

having been defined and tlieir chief properties explained, various

constructions for products and quotients having been made, and

the non-commutative property of multiplication having been

illustrated by conical rotations and otherwise.

In the succeeding chapters, I have not scrupled to introduce,

either in the articles in small type or in the worked examples

in small type, illustrations of the applications of quaternions

to subjects that can hardly be supposed to be familiar to the

beginner in mathematics. It is suggested in the table of con-

tents that these more difficult portions should be omitted by

a beginner at tirst reading. The book is, however, primarily

intended for those who commence the study of quaternions

with a fair knowledge of other branches of mathematics; in

other words, it is written for the majority of those at present

likely to read quaternions because, as yet, the subject is not

generally taught in elementary classes. On the other hand,

I have abstained from printing examples of an artificial nature,

and I have avoided unnecessary difficulties.

Although this book may be regarded as introductory to the

works of Hamilton, it may also to some extent be considered

as supplementing them. Many of the results contained in it

have appeared only in the publications of learned societies,

and many others are believed to be novel. It is possible,

therefore, that this volume may be found to have some points

of interest for the advanced student of quaternions. He will

find, for example, that quaternions lend themselves to the

treatment of projective geometry quite as readily as to investi-

gations in mathematical physics and in metrical geometry.

By means of a somewhat elaborate table of contents, modelled

on those prefixed by Hamilton to his Lectures and Elements,

and by the aid of a full index and numerous cross references,

I trust that the contents of this book will be found to be fairly

accessible to the casual reader as well as to the systematic

student. It must be remembered, however, that the objects of

a work of this nature are to introduce a subject of the highest

educational value, and to develop a powerful and comprehen-

sive calculus. Such ends can be attained only by illustration

and by suggestion, and it is not easy to tabulate methods of

investigation.
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It would be impossible to overestimate what I owe to

Hamilton's Lectures on Quaternions (Dublin, 1853) and to

his Elements of Quaternions (London, 1866, 2nd edition, in

two volumes, with notes and appendices by C. J. Joly, London,

1899, 1901). The admirable Elementary Treatise on Qua-

ternions (3rd edition, Cambridge, 1890), by the late Professor

P. G. Tait—who has done so much for quaternions by his

classical applications of Hamilton's operator V—has also been

very useful. Other writers to whom I am indebted are referred

to in the text.* I am glad to have this opportunity of offering

my thanks to my respected friend, Benjamin Williamson^

Esq., F.R.S., Senior Fellow of Trinity College, Dublin, for his

great kindness in assisting me with a considerable portion of

the proofs. I am also indebted to him for the uninterrupted

encouragement he has given me, alike privately and in his

official capacity as a member of the governing body of Trinity

College, in my attempts to render Hamilton's work more

widely known.

CHAELES JASPER JOLY.

The Observatory,

DuNsiNK, Co. Dublin, 1st Jan., 1905.

*The Bibliography by Dr. Macfarlane, published by the International Association

for the promotion of the Stud}' of Quaternions and Allied Systems of Mathematics

{Dublin, 1904), renders unnecessary any detailed list of works on quaternions.
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CHAPTER I.

THE ADDITION AND SUBTKACTION OF VECTORS.

Art. 1. A right line, AB, considered as having not only
length but also direction, is said to be a vector. The direction

of the vector AB is that of the point B as viewed from A, and
the vector BA is the opposite of AB, being equal to it in length

but having the opposite direction. All equal right lines AB,
A'B', etc., which have the same direction are equal vectors.*!*

Y Art. 2. The sum obtained by adding the vector BC to AB is

denoted by BC+ AB, and is defined to be the vector AC. Thus
symbolically (fig. 1),

BC+AB = AC.

Fig. 1. Fig. 2.

Completing the parallelogram, ABCD, the definition of addition

gives likewise the equation (fig. 2)

DC+AD = AC
or AB+BC = AC,

because the vectors DC and AD are respectively equal to AB and
BC. Thus the sum of two vectors is independent of the order

I

* Following the example of Hamilton in his Lectures on Quaternions and in his

Elements of Qiiaternions, the table of contents of this volume is amplified into an
analysis or commentary to which it may be useful occasionally to refer,

t It sjiems to be an unnecessary complication to print a bar (ab) over the letters

which represent a vector ab. Hamilton sometimes uses the notation ab to re-

present the length of the vector ab.

J.Q. A
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in which they are added, or the addition of two vectors is a

commutative operation.*

Art. 3. The sum obtained by adding any vector CD f to the
sum of AB and BC (fig. 3), is the sum of CD and AC, or the

vector AD. But AD is likewise the sum of AB and BD, that is,

the sum of AB and the sum of BC and CD. And by completing

Fig. 3.

the parallelogram of which BD is a diagonal and BC and CD are

sides, it appears that AD is also the sum of BC and the sum of

AB and CD. In other words, the same vector is obtained by
adding any one of the three vectors, AB, BC and CD, to the sum
of the other two. This vector sum AD is consequently inde-

pendent of the order in which the component vectors are taken
and of the mode in which they are grouped.

The same process applies in general, and the addition of
vectors is an associative and a comm^utative oiJeration. It is

associative inasmuch as the vectors may be grouped into partial

sums in any way ; and it is commutative because the order in

which the vectors are taken is immaterial.

Art. 4. Any number of vectors being arranged as the succes-

sive sides AB, BC, etc., of a polygon, their sum is the vector AD
drawn from the initial point of the first to the terminal point of

the last. If the polygon happens to be closed, the sum is a

vector of zero length, or simply zero. Thus, in particular,

AB4-BA= 0, AB-}-BC-}-CA= 0, AB+BC -f CD -f-DA = 0.

Art. 5. It is natural, in accordance with the equations just

given, to introduce the sign — , and to write

BA=-AB,
^ In certain systems of vector analysis, the word vector is used in a different

sense, and a vector cannot be determined without reference to its position. The
commutative law then ceases to be obeyed. An example of non-commutative
addition will be found in Art. 21, p. 16,

t In every case, unless the contrary is expressed or implied, the vectors with
which we deal are not necessarily parallel to a plane.
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or to agree that the sign — prefixed to a vector shall convert it

into its opposite (Art. 1). Hence the subtraction of one vector

from another may be regarded as equivalent to the addition of

the opposite of the first vector to the second. Subtraction of

vectors is thus included in addition.

As we can now interpret — AB, it is convenient to use a single

symbol to denote a vector. We shall follow Hamilton's admir-
able notation, and shall employ the small letters of the Greek
alphabet to represent vectors, using, as a general rule, the earlier

letters a, /3, y, etc., for given or constant vectors, and p or cr for

variable vectors.

Art. 6. The sum of two equal vectors is a vector of the same
direction and of twice the length. It is natural to write, as in

algebra, ^ . o . .^ 2a = a-{-a, Sa= a+ a+ a, etc.,

and generally, at least when n is an integer,

if the vectors ^ and a have the same direction while the length

of ^ is n times that of a. This result may be extended to the

case in which n is fractional or incommensurable by a process

identical with similar extensions in elementary algebra. The
last article affords the interpretation to be adopted when n is

negative ; and when n is complex (n'+ s/^^n''), the difficulties

of interpretation are of the same nature as in ordinary algebra^

and need not be discussed here.

Further, it is natural to say that the coefficient n results from
the division of the vector ^ by the parallel vector a, and we
shall therefore write

n= ~, or 71= |8 -^ a, or n= /3 : a,
a

as a consequence of ^= na. Also, conversely, whenever the
quotient of two vectors is an algebraic quantity or a scalar*
we infer that the vectors are parallel, and that they have the
same or opposite directions according as that scalar is positive or
negative.

Again, if n is an integer and if a and /5 are any two vectors^

the laws of addition give

and by a process of induction this relation may be extended to

*Thfe Jjvord 'scalar,' synonymous with algebraic quantity, was employed by
Hamilton because such a quantity may be conceived to be constructed by "com-
parison of positions upon one common scale (or axis)." Elements, Art. 17.
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Morethe case in which n is fractional or incommensurable,
generally, if x, y and z are any scalars,

z {xa+ y^)= zxa+ zyfi,

so that the multiplication of vectors by scalars is a distributive

operation.

Art. 7. In the calculus of quaternions a unit of length is

selected to which the lengths of all vectors are referred. The
tensor of a vector a is the number of units contained in its

length, and is denoted by the symbol Ta. Thus the tensor is a
positive or " signless " number, at least when the vector is real,*

and in particular, Ta= T('— a")

In general, if -ti is a real scalar,

T7la= 7^Ta if ti>0; Tna= -nTa ii n<0.
Hamilton also uses the notation Ua to denote a vector of unit

length having the same direction as a, and he calls Ua the versor
of the vector a. Since the direction of — a is opposite to that of a,

Ua=-U(-a),
and, more generally,

\Jna= 'Ua if '^^>0; JJna= —JJa if n<iO.

Also, by Art. 6, a= Ta . Ua,

or a vector is the product of its tensor and its versor.

Fig. 4.

Art. 8. An arbitrary vector OD (or S) may be resolved in one
way into a sum of vectors parallel to three given and non-
coplanar vectors OA, OB and OC (or a, /3 and y).

* For imaginary vectors see Art. 22, p. 20.
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Through D draw three planes parallel to the planes BOC, COA
and AOB, meeting the lines OA, OB and OC in the points A', B', C.
Then it is evident from the figure that

OD = OA'+OB'+OC'; or OD = a;OA+ 2/OB+0OC;

or S= xa-\-y/3-{-zy,

>ii the scalars x, y and z are the quotients of parallel vectors,

a;= OA':OA, 2/ = 0B':0B, = OC':OC;

and it is further evident that this construction is unique.
It may happen that some or all of these three scalars are

negative, or some may be zero, but these cases can present no
difficulty.

Ex. 1. Find the vector oc to a point which divides ab in a given ratio.

Ttt AC CB AC+ CB R-a v-a la+mB~\Here — =-^=^- =9-

—

=l or 7= , ^ .

L ml l+m l+m m ' ' l+m J

Ex. 2. If weights I, m and n are placed at a, b and c, find their
centre of mass.

[The extremity of the vector (la + 7nl3+ 7iy) :{l+m+ n\ supposed to be
coinitial with a, and y.]

Ex. 3. Prove that the mean centre of a tetrahedron is (a) the intersection
of bisectors of opposite edges

; (6) the intersection of lines joining the
vertices to the mean points of the opposite faces. Show that the former
lines bisect one another, and that the latter quadrisect one another.

Ex. 4. Prove that the vectors ±a±/3±y when drawn through a common
point terminate at the vertices of a parallelepiped.

Ex. 5. Discuss the arrangement of the extremities of the sixteen coinitial

vectors ±a±^±y±8. Consider the points with reference to the extremities
of ±a, etc., and with reference to one of the points, the extremity of
a + jS 4- 7 + 8 for example.

Ex. 6. Prove that four arbitrary vectors are connected by a linear
relation,

, in , , js- r.' aa+ b/i-\-cy + d8=0.

;. Ex. 7. If three vectors are linearly connected, or if

they are coplanar.

Ex. 8. If aoA+ 6oB+coc=0, a+ b+ c=0, the points a, b, c are coUinear.

Ex. 9. If aoA+ 6oB+ coc+ c?OD= 0, a+ b+ c-\-d=:0, the points a, b, c, d
are coplanar.



CHAPTER II.

MULTIPLICATION AND DIVISION OF VECTORS AND
OF QUATEENIONS.

Art. 9. The product of the length of one vector (a) into the
length of the projection of another (/3) upon it is denoted by the
expression ^ ^— t^ap,

and this function Sa/3 of two vectors is called the scalar of a/3.

By similar triangles it follows that (fig. 5)

Sa/3 = S/3a,

Fig. 5. Fig. 6.

and because the sum of the projections of any number of vectors

on any line is the projection of their sum, it appears that (fig. 6)

Sa (j3+ y)= Sa/3 4" Say

;

and therefore the function is a doubly distributive function, or

SSa2/3= 22Sa/3.

If the vectors a and y are at right angles,

Say= 0,

and conversely.

An equation such as Sa^= SyS

implies that the projection of a on /3 multiplied by the length of

fi is equal to the projection of y on ^ into the length of S.
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Art. 10. A unit of length having been assumed, let a vector

be drawn at right angles to two given vectors a and ^ so that

rotation round this vector from a to ^ is positive,* and let the

length of this vector be numerically equal to the area of the

parallelogram determined by a and p. This vector is denoted
by the symbol y^/^,

and is called the vector of a/3.

If the vectors are taken in the reverse order, \^a has the

same length as Va^S, but the direction is opposite, the rotation

being now reversed, so that

If an equation such as Va^= \yS

. Fig. 7.

exists, the vectors a, ^8, y and S must all be parallel to the same
^lane; the areas of the parallelograms determined by a and ^
and by y and S must be equal, and the sense of rotation from
a to /3 must be the same as that from y to ^ (fig. 7).

Like Say8, the function Yafi is a doubly distributive function.

If /3' is the component of the vector ^ at right angles to a it is

obvious that Va/3 = Va^',

Fig. 8.

and the tensor of Va^S is equal to the product of the tensors of a
and of P' (tig. 8).

^ The convention respecting rotation which is here adopted is the opposite of
that employed by Hamilton. The axis of a rotation is taken to be in the direction
of the advance of a right-handed screw turning in a fixed nut, and this system is

now known as the right-handed system of rotation (Clerk Maxwell, Electricity and
Macfnetism, Art. 23). On the other hand Hamilton calls his system right-handed,
but he takes as the axis the direction from blade to handle of a turn screw when
screwing a right-handed screw iiUo a nut {Lectures, Art. 68, Elements, note to
Art. 293), and accordingly some little care is necessary in comparing Hamilton's
demonstrations with those of the present volume. Tait uses the modern right-
handed system in his quaternion writings.
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If y8' and y are the components of ^ and y at right angles to
a, and in the plane of the paper while a is drawn upwards at
right angles to the plane (fig. 9), the vectors ^a^' and Nay will

,r

Fig. 9.

lie in the plane of the paper, at right angles respectively to /3'

and y'. But TVa/3' : T^' = TVay : Ty'= Ta, and consequently the
triangles OB'C' and OB^C^ are directly similar. Hence OC^ is at
right angles to OC' and TOC^ : TOC'= Ta. Consequently

OC^ = Va(/3'+ y ) = OB^+ B^C, = Va^'+Vay

.

In this relation we may replace ^' and y by /5 and y, so that

Va(/3+ y) =Va^+ Vay; V(/3+ y)a= V^a+ Vya,

«, j8, and y being three arbitrary vectors.

We have now V2a2^ = 22Va/3

for any number of vectors, since in particular for four vectors,

V(a+ ^)(y4-^)= V(a+ /3)y+ V(a+/8)^=Vay+ V/3y+ Va^+ V/5^.

If Vaj8= without having either a or /3 zero, the vector a
must be parallel to /3, for the area of the parallelogram deter-

mined by a and ^ must vanish.

Art. 11. The product of the vector a into /3 is defined by the

equation, a^ = Sa^+ Va/3, (b)

and because it is the sum of two doubly distributive parts, it is

likewise doubly distributive, or

The product /3a is not generally equal to a/3. In fact

/3a= Sa/3~Va^ because Sa^= S^a, Va/3= -V^a.
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Thus multiplication of vectors is not commutative. We speak

of a/3 as the product of ^ by a, or the product of a into /3.

Adding and subtracting the expressions for the two products

a^ and y8a, we find

Art. 12. The sum of a scalar and a vector is called a quater-

nion because it involves four independent numbers, such as the

scalar and the three coefficients of the vector when resolved

along three given directions (Art. 8).

Thus the product of a pair of vectors is a quaternion, and
conversely, every quaternion may be expressed as a product of a

pair of vectors. If q is a quaternion, if Sg is its scalar part and

\q its vector part, so that

if a and /3' are two vectors at right angles to one another and to

Vg, so that Ya/S' = Yq; and if /3— /3' is the vector parallel to a,

for which Sa(/8— /3') = Sg, then we have

Vg = Va/3 because Va(^-/3') = 0; Sq = Sa^ because Sa/3'= 0,

and therefore q = afi,

or the quaternion has been reduced to the product of a pair of

vectors.

Scalars and vectors may be regarded as simply degraded cases

of quaternions.

The sum of any number of quaternions we define to be the

sum of their scalar parts plus the sum of their vector parts.

Addition of scalars is associative and commutative, and likewise

addition of vectors (Art. 3). It follows that addition of

quaternions is associative and commutative.

Art. 13. We next define the product of a quaternion and a
vector to be distributive with respect to the scalar and the vector

of the quaternion. Thus

yq = y{Sq-{-Yq)-=ySq-\-yYq, qy = {Sq+ Yq)y= Sq .y-{-Yq.y.

The products yYq and Yq . y fall under formula (b), and we
define that multiplication of a scalar and a vector is commutative,
so that ySq= Sg . y.

Thus we can interpret expressions such as a . /8y or a^ . y (the

product of a into the product /5y and the product of the pro-

duct a^ into y), and we see that they are distributive with
respeijt to the three vectors, so that

la . l/31y= SSSa . /3y, 2aS/3 . Zy= Ula/S . y.
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We shall now prove that the products are associative, so that
we may omit the points, and to this end we shall consider the
laws of combination of three mutually rectangular unit-vectors,

i, j and k.

Art. 14. Let any three mutually rectangular unit-vectors,

iy j and k, be drawn so that rotation round i from j to k is

positive.

According to the usual convention, if i and j are in the plane of

the paper, k will be directed vertically upwards, and it is seen at

Fig. 10.

once that rotation round j from k to i, and also round k from i

to j is positive (Fig. 10).

We have then, because the vectors are mutually perpendicular

and of unit length,

Sjk = Ski = Sij= 0; Si2= S/=SF=-l; (Art. 9)

Yjk= i, Yki=j, Yij= k; Ykj= —i, Yik= —j, Yji— —k; (Art. 10)

and by formula (b) it follows at once that

i^ =^'2 = 7(;2= _ 1
^
jk= i= — kjj ki =j= — ik, ij= k= —ji. . . . (c)

Let us now, as in the last article, form the ternary products of

these vectors. We have by the relations just given

i ,jk= i A= —l=k. k= ij , k= ijk,

i.f=-i=+k.j::=ij.j= ij'\

the points being omitted as they are seen to be unnecessary.

Similarly, for every ternary product of i, j and k, the points may
be shown to be unnecessary.

For quaternary products, let i, k,\, /ul each denote some one of

the three symbols i, j, k, then

I . kX/ul= 1 . k . X/x = IK . Xjui = f /c. X . /x = ik\ . fji = ikX/ul,

because, for example, i . /c. X/x is a ternary product, as X/ul must be

:th dijy ±A^ or — 1. In this way all products of the symbols

i, j, k are seen to be associative.
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It may be a useful exercise to show that the associative law-

enables us to deduce all the relations (c) from Hamilton's funda-
mental formula (a), o -o 7 2 • -y 1 / x

For example, i . ijk= —i gives jk= i.

Ex. 1. Prove that

ijk~jki—kij= —l=—kji= —jik= - ikj.

Ex. 2. If the symbols i, j, k obey the laws,*

i2=j2=k2=+l; jk=i, ki=j, ij=k; kj=-i, ik=-j, ji=-k,

prove that their multiplication is dissociative.

[i2.j = +j but i.ij=i.k=-j.]

i Art. 15. We can now show that multiplication of vectors is

associative. Let any three vectors, a, /3 and y be expressed in

terms of i, j, k, so that

a= xi-{-yj+zk, P= xi-\-y'j+z% y==x"i-\-y"j-{-z"k.

By Art. 13,

h «
. /5y= SSSo^i

.

y'jz"k= ^.^Ixy'z'i . jk= Y11xy'z"ijk,

"^ ap . 7= S22 xiy'j . z"k= ^lllxy'zf'ij . k= ^^Ixy'zijk,

so that a. /3y= al3 . y= a^y,

and similarly for all products of higher orders.

Hence multiplication of quaternions is associative, for a qua-
ternion may be expressed as the product of a pair of vectors.

It now appears (compare Art. 13) that the product of any
number of vectors taken in any given order is a definite

quaternion.

Art. 16. The division of vectors may be reduced to multi-
plication. By formula (b) the square of a vector is

a2=S.a2=-(Ta)2; so that a.7^2=l>

and thus it appears that — a : (Taf is the reciprocal of the vector

o, say a~^ or -. The vector a'^ is opposite to a in direction,

* Mf. Oliver Heaviside bases his vectorial Algebra on these laws. Prof. Knott
{Recent innovations in Vector Theory, Proc. R.S.E., 1892-3) draws attention to
papers written by the Rev. M. O'Brien in the years 1846-52, in which the square
of a vector is taken to be positive.
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and its tensor is the reciprocal of that of a. We can therefore
interpret products such as

^a-i and a'^/^,

and the first of these we shall call the quotient of /3 by a, and
denote it by o

— or B:a.

The reciprocal of any product of vectors is the product of their

reciprocals taken in the reverse order. For if

we have QQ'= 1

in virtue of the associative law. Similarly, the reciprocal of a
product of quaternions is the product of the quaternions taken
in the reverse order. Hence every quotient of vectors or of

quaternions is a quaternion ; and more generally every com-
bination of quaternions by the processes of addition, subtraction,

multiplication and division is a quaternion.

Ex. 1. Prove that

Ex. 2. Distinguish between the expressions

y a « ya

[These maj^ be written Sy~-^^a~^ and 8j8a~^y~\]

Ex. 3. Prove that

ay a ya ' ^."•Z

Art. 17. The conjugate ILq of a quaternion q is defined by
the relation Kq= Sq-Yq.

^(jT -^ If then q= a^, we have Kq = l3a (Art. 11), and

-J&ri qj^q= ^^^^ = ^2^2= Kgg = Ta^T^"^ (Art. 16).

The products of the tensors of the vectors into which a quaternion

is resolvable is therefore independent of any particular selection

of the vectors since Sg and Yq are independent of any particular

pair of vectors ; and the square of this product is

qKq = (Sq-^yq)(Sq--Yq)= (Sqf^{Vqf= Kqq = (Tqf,

if we call this constant product of tensors, the tensor (Tq) of

the quaternion.
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Again,

g = a^= Ta.Ua.T^.U/3= TaT^.UaU^ = Tg.Ug

and Vq = UaU/3 is called the versor of the quaternion. If ir— Lq
is the angle between the vectors a and S, which is less than two
right angles and measured from a to /3, we see by the definitions

of Sg and Vg that (Arts. 9 and 10)

S^= Tq cos L g, TVg= Tg sin l q.

The angle z.g is called the angle of the quaternion, and is

independent of any particular set of vectors a, /5.

A plane at right angles to Vg is called the plane of the

quaternion and JJYq is called the axis.

Ex. 1 . Prove that Kg'=w — ix —jy - kz^

VYq= {+ ix+jy+ hz) : >J{+ x^+y^+z^),

Vq= (w+ix+jy+kz) :^(w^+a;'^+y^-\-z^),

^^where q=w+ ix +jy + kz.

Write down the analogous functions of Kg- in terms of x, y, zEx. 2.

and w.

Ex. 3.

Ex. 4.

Prove that a-ij8=K .
/?a-i.

What is the nature of g^ if g*= Kg- ? If ^=-K^

Art. 18. We can always reduce a quaternion to a quotient of

vectors (Arts. 12, 16), and write

^^OB ^ TOB ^, UOB
~0A'

<1^
m TOB ^^

Sg
a ui\. * lUA - UOA' ^ OA

the line BA' being drawn perpendicular to OA.

OA' ^^ A'B
, A^g=--, z.g=AOB,

OA^

Thus the shape of the triangle AOB is constant for a given
quaternion. From this point of view, a quaternion is called by
Hamilton a ratio of vectors, as it depends on their relative

magnitudes and on their relative directions.
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It is not difficult to show that the conjugate (see Fig. 12)

^ OB' .„ OB
^^ = 0A '^ ^ = 0A'

for q+ Kq = 2Sq, q--Kq= 2Yq.

The triangle AOB' is inversely similar* to AOB.

Fig. 12.

Art. 19. Conversely, if the product qa is a vector ^, it is

evident that a and /3 are both at right angles to Yq. And if a
is any vector at right angles to Yq, qa is a vector making a
constant angle (^q) with a, and having its length Tg times that

of a. In other words, regarding the quaternion as an operator,

it turns vectors in its plane through a given angle, and alters

their lengths in a given ratio. In particular we may regard a
vector as turning vectors at right angles to it through a right

angle, and altering their lengths proportionately to its own.
The versor JJq turns vectors in its plane through the angle Lq

but leaves their lengths unaltered. The tensor Tq alters the

lengths of all vectors in a given ratio. The total effect produced
by g on a vector in its plane may be considered to be effected in

two stages or at once as indicated by the relation

l3==qa = Tq.\Jq.a= Vq.Tq.a.

Art. 20. The results of articles 18, 15 and 16 afford an ex-

tremely elegant construction for the product of two quaternions

q and r. Take any vector OB along the line of intersection of

the planes of the two quaternions. Make the triangle BOG in

* Hamilton uses tlie phrases direct similitude and inverse similitude in the sense
that two directly similar figures in a plane appear to have the same shape ; while
of two inversely similar figures one has the same shape as the reflection of the
other in a mirror.
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the plane of r similar to the triangle determined by r (Art. 18)

;

make AOB in the plane of q similar to the triangle of q ; then,

by the associative principle (Fig. 13)

^ 0A\ OB OA /

,-^B

Fig. 13. Fig. 14.

If the triangles BOA' and C'OB are respectively coplanar with
and similar to AOB and BOC, the second product is (Fig. 14)

_OAY_aA/ 0B\
^^ ""OC'V OB 'OCV*

Ex. 1. Prove that K(r^)=K5'Kn
[Take c, on oc and a, on oa so that c^ob and boa, are inversely similar to

BOG and AOB, and the triangle a^oc, is inversely similar to coa. Art. 18.]

Ex. 2. The product of the conjugates of any number of quaternions is

the conjugate of their product in reverse order.

[By Ex. 1 , K (p . ^r)=K (^r) . Kp, etc.]

Ex. 3. Show that

^PlP2Ps ' . -Pn= h [P1P2 '"Pn+ ^pJ^P.. -1 • • • K^l],

ypiPiPs ...Pn= i[PlP2 '"Pn - Kp„Kp„_ 1 . .. K^i].

If ttiao ...an are ?2. vectors, and if Ila= aic'2 . . . a„, Il'a= a,ia„_i . . . ai>Ex. 4.

show that

Ex. 5.

Ex. 6.

sna=|na+^(-)"n'a,
vna=|na-^(-)"n'a.

Prove that

Qpq= Sqp ; TVpq=TYqp ; Lpq == Lqp.

Prove that pK.q+^Kp= 2S . pK.q = 2S . qY.p.

Ex. 7. Prove that the tensor of a product of any number of quaterniona
is independent of their order.
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Ex. 8. Prove that the versor of a product of any number of quaternions
is the product of the versors taken in the same order.

Ex. 9. Show that three quaternions cannot in general be reduced
simultaneously to the forms

Ex. 10. Prove that the scalar of a product of any number of quaternions
is unchanged when the quaternions are cyclically transposed.

Ex. 11. Prove that the tensor of the vector part of a product of

quaternions remains unchanged for cyclical transposition.

Ex. 12. Prove the identity

{ww' — xx' — yy' — zz')^+ {wx'+ w'x •\-yz' — y'zf

+ {wy' + w'y+ zx' — z'x^+ {ivz'+ w'z+ xy' — x'y^

^{w'^+ x^+y'^+z^){w"^+x'^+y'^ + z'^).

[See Ex. 1 of this series and Ex. 1, Art. 17. This identity is of historical

interest as regards the discovery of quaternions. See Graves's Life of Sir

William Rowan Hamilton, vol. ii., p. 437.]

Art. 21. The multiplication of versors, to which the multipli-

cation of quaternions may be reduced by separating the tensors,

admits of a simple spherical representation.

Fig. 15.

A versor is represented by a directed great circle arc belonging

to a definite great circle (the plane of the versor) and having a

definite length (the angle of the versor). From the figure

<Fig. 15)
„ OC 00 OB -TT TT^'3 = OA = OB-OA= ^^^3;

-., OA' OA' OB .- .^

^?'"=OC' = OB-OC'=
^«U''-

The spherical triangles ABC and A'BC' are inversely equal.

The construction recalls the construction for the sum of vectors,

and it is allowable to write

AC= BC+AB; C^'= BA'+C^=AB+ BC.
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This addition of vector-arcs is not commutative, for C'A' is not

generally equal to AC—equality of these vector-arcs requiring

equality of length, similarity of direction and coplanarity.

Two quaternions are commutative in order of multiplication

if, and only if, they are coplanar. A necessary condition for

commutation is that the arcs AC and A'C' should belong to the

same great circle. If OB is not coplanar with this circle, B must
be its pole. In this case the angles of the versors are right, and

Fig. 16.

the versors are unit vectors. But a glance at the figure shows
that the versor products have oppositely directed angles, and the

products are therefore unequal (compare figs. 15 and 16).

For coplanar versors, the arc AB = CD in fig. 17, and

-r-r TT OC OB OC OD OD OC ^^ ^^^^^^ = 0i=0A0l= 0B=0C'0B = ^5^^-

That the square of a right versor is equal to negative unity is

well illustrated by fig. 18, for which

'0B\2 OA' OB OA'/oby_oa; 0B_0A_
* \0A/ ~0B * OA~OA

~

the vector OB being perpendicular to A'A.

J.Q. B
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Replacing Vrq in fig. 15 by JJp, we have the new figure (fig.

19), since JJr — tjpq-'^ and tlqr— JJqjjq'^. The point Q is the
pole of the versor Ug or the extremity of the vector UVg.

Fig. 19.

The arcs AC and A'D are equal, and equally inclined to the

great circle ABA' since the angles of the triangles ABC and A'BC'

are equal. Thus AC may be changed into A'D by a rotation

round Q through the angle AQA', double the angle of the quater-
nion q. The vector JJVp to the pole of the arc AC is transformed
into Jjyqpq~'^ by the same rotation. Now Yqpq~'^ = q.Yp .

q'^

because Y{q .Sp .q-^)~0, S{q.Yp .q-'^) = 0, and accordingly a

conical rotation round the axis of q and through double its angle
changes an arbitrary vector p into the vector qpq ~ \

Ex. 1. If OP is the vector from a fixed point to a point in a rigid body,
rotation of the body round an axis oq=V5' through an angle -iLq carrier

the point p to p', where op'= g' . op . q~^.

Ex. 2. The displacement produced by the rotation is

pp'= g- . OP . ^"^ - OP.

Ex. 3. A translation of the body carries a point from v to p", where
pp"= 8 is the same for all points of the body.

Ex. 4. If the body is first rotated, as in Example 1, and then translated

the displacement of p is

8+q.OP.q-^-op ;

while if it is first translated and then rotated, the displacement is

q{8-{-OF)q-^-OP,

Ex. 5. If the body is first rotated about one axis oq and then about
another or, op'= 7'q .op.q~^ r~i =rq . of , (rq)"^.

Ex. 6. If the first rotation is now reversed, the position of the point p'

IS p ,
where 0F"=q~^7'q . op . q~^r~^q.

Ex. 7. A body receives rotations about two intersecting axes. Prove
that the order in which these rotations are effected is of importance.

[The displacements of a point are

q7',0F.r~^q~^ — 0F and rq

,

op .
q~^/''^ — of,

and these are generally different unless qr= rq, but then the quaternions aie

coplanar and the rotations take place about one and the same axis.]
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Ex. 8. Find the reflection of a body in a plane mirror.

[The point o being on the mirror, which is perpendicular to A, the vector

A, . OP . A~^ is the result of rotating op through two right angles round the
normal. Reversing the direction of this vector, the vector to the image of

the point p is op'= — A . op . A~^]

Ex. 9. Successive reflection in two mirrors is equivalent to a rotation

round the line of intersection of the mirrors through double the angle
between the mirrors.

[Here -/x(-X. op. A~^)/x-i= +/>iA,. op. A~V~^- Also z./xA= ^,

where is the angle between the mirrors, and 2LfjLX= 20.]

Ex. 10. Given three lines intersecting in a point, it is required to draw
three planes, each through one of the lines, so that the lines of intersection

in one plane may be equally inclined to the contained line.

When is the problem indeterminate ?

[Let a, (3, y be the vectors of the given lines. The sought lines of inter-

section are VySay, Vy^a, Vay^. Compare Art. 31, p. 31.]

Art. 22. The laws of combination of the five symbols

S, V, K, T and U
may be summarized in the symbolical multiplication table

:
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quaternion. There can be no mistake if we employ brackets and
write (Sqf for the square of the scalar and S(q^) for the scalar

of the square, and whenever there is the least fear of confusion

brackets should be used. One of the great advantages of

quaternions is the extreme brevity of the notation. Another
and still greater advantage is its great explicitness, and this

should never be sacrificed for the sake of a few brackets.

Hamilton writes S . q^ for the scalar of the square and Sg^ for

the square of the scalar whenever there is no fear of confusion,

and he uses the notation V . q^ and Yq^ in a similar sense and in

conformity with the established notation d . x^ and dx^ for the

differential of x"^ and for the square of the differential of x.

Some eminent authorities, Tait for instance, in conformity with

the notation cos^ x = (cos x)^, write S^g instead of Sq^, though in

strictness this would mean S . Sg ( = Sg). But considering the

enormous care Hamilton took with his notation we prefer to

abide by his convention. No confusion can arise with respect

to T . g2 or Tg^ or (Tg)^, for the tensor of the square is the

square of the tensor, and similarly U. g^ = Ug^ = (Ug)^ and
K . g2 = (KqY= Kg^. The expression S^ . g means the product of

Sp into g, and it is well when possible to write this in the

equivalent form qSp, while S .pq is the scalar of the product pq,
but if the expressions are at all complicated, it is safer to write

{Sp)q and S(pq).

An imaginary quaternion

where p and q are real quaternions and where V — 1 is the imaginary symbol
of algebra regarded as a scalar commutative with all quaternions, is called a

biquaternion by Hamilton. Similarly he calls imaginary vectors (a+>/ -I . f3)

bivectors and imaginary scalars, biscalars. No ambiguity attaches to

S$= S^+\/^S^, or to V^= VjD+\/^Vg,

and the only ambiguity in T^ is one of sign, and this Hamilton removes as

follows. He writes

T^=^+x/^.y,
where x and y are real scalars and where x is positive, and in order to

determine x and y he employs the relation (Art. 17)

(T02^qKQ=pKp-qKq+ s/^^ipKq + qKp),

or {TQf

=

Tjo2 - Tj2+2>J^S .pKq =x^-y^+ 2V^ . xy,

observing that qKp=K.,pKqf so that the imaginary part of (T^)^ may be
written 2^^S.pKq, or sV^^is . qKp.

Equating reals and imaginaries we find, from

x^-y^=Tp^-Tq^ and xy= S.pKq,

that the real positive value of ^ is

a:={^(Tp2_T^2) + |-i(T^2_T^2)2+ (s.pKy)2]i|i
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It may happen that T(^^) is -T^T^' instead of +TQTQ' where Q and Q'

are biquaternions. In other particulars ambiguity does not arise.

The tensor of a biquaternion may vanish, and in this case we have an
equation such as

where Q'=K^ without having either Q or Q' zero. The conditions are

Tp'^=Tq^ and S.pKq= 0,

and when these are satisfied, the biquaternion Q is called by Hamilton a

nullifier. A few examples will be found in Chap. IV. ; and the Lectures

on Quaternions (Arts. 669-675), from which this account of biquaternions has
been taken, may be consulted with advantage.*

Ex. 1. Prove that combinations of the symbols prefixed to q lead to one
or other of the following :

S^, V^, K^, Tq, Vq ; TV^, SU^, VU^, TVU^, QJq)-\ VYq.

Ex. 2. Express these functions in terms of x, y, 0, w^ ^, j and h. (See

Ex. 1, Art. 17, p. 13.)

Ex. 3. Express these functions in terms of the tensor, axis and angle of

the quaternion.

Ex. 4. Show that the vectors \JYpq and UV , \]p\Jq are identical.

Ex. 5. If a, B and y are vectors, prove that V is a redundant symbol in

S.aV./3y.

^ Ex. 6. Find the diflference of the expressions S . pqr and S .pY . qr.

c Ex. 7. If VYp=VL>, prove that Sp= 0.

Ex. 8. What inference can be drawn from the equation Yq=Y\Jql and
what from Yq= JJq ?

Ex. 9. Prove that

T(y+ /5)>±(Ty-T^) unless JJy=-V(3,

and find the relation in the exceptional case.

Ex. 10. Show that

Tq +Tp>T(q+p) unless q=xp, x>0.

Ex. 11. Show that
Tq + Sq>0 unless <q — 7r.

EXAMPLES TO CHAPTER II.

Ex. 1. Prove that Y(a- l3){a+ /3)= 2Yaj3 and assign the geometrical
interpretation.

Ex. 2. Show similarly that S(a - ^)(a+ ;8)= a^ - f3^ and interpret.

Ex. 3. Under what conditions is (a+ (3)(a- /3) equal to a^ - ^2 ?

*Clifi"ord uses the word biquaternion in another sense, and Prof. A. M'Aulay
has recihristened Clifford's biquaternions, and has written a large book entitled
"Octonions: a Development of Clifford's Biquaternions." (Cambridge, 1898.)

It does not seem to be unreasonable to retain Hamilton's convenient word for the
purpose for which it was coined.
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Ex. 4. Establish the identity connecting three quaternions,

p^+ q^-\-r^=pqr-\-qrp-\-rpq, where p-\-q-\-r=0.

Ex. 5. If the relation

1 l_ a-i8
13 a a/3~

connects two vectors a and /?, prove that af3~^a~^= f3~'^ and show that the

vectors are parallel.

Ex. 6. Reduce any two quaternions p and q to quotients of vectors

having a common denominator, or in other words, find three vectors a, f3

and y, so that By
^ a ^ tt

Ex. 7. Prove that the relations

^ 13+y f3-y , 13 yp + g= ~—f-, p-q=-—^, where ;»= -, a= -j

are consistent with the definition that the sum of quaternions is the sum of

their scalar parts plus the sum of their vector parts.

Ex. 8. For any two quaternions

q{q~^±r~'^)= {r±q)r~^
; q{q ±r)~'^r= (r~^±q~^)~^.

Ex. 9. The sign V is superfluous in S . aV(3y. Is it superfluous in

Ex. 10. The second vector a may be omitted from Va(a + ^). May it

be omitted in Ya-^{a + p) or in Va(a+ /5)-i
1

Ex. 11. Contrast, where necessary, the four expressions,

Va^ a§_ Ya§ af3
^ y8 '. ^VyS' ^Vy8' y8'

Ex. 12. The laws of refraction of light from a medium of index n into

one of index n' are comprised in the relation

nVva = n'Yva,

where v, a and a' are unit vectors along the normal, the incident and the
refracted ray, respectively,

(a) From this relation,

n'a = VsJ{n'^ + n^Yva^) — 7ivYva.

Ex. 13. It is required to find a quaternion q and vectors a, (3 and y, so

that if a, b and c are three given quaternions,

aq = a, hq =
f3,

cq= y.

(a) Show that
a_a6_^c_y,
h (3^ c y^ a a'

and explain how a, (3 and y can be found from these relations ; the tensor

of one vector (a) being assumed. (Robert Russell.)



CHAPTER III.

FORMULAE AND INTERPRETATIONS DEPENDING ON
PRODUCTS OF VECTORS.

Art. 23. It is often useful to consider a vector as representing

a directed area. Assuming any two vectors a, ^8, so that Ya^
may equal a given vector y, we may regard y as representing the

directed area of the parallelogram determined by a and ^—there

being as many imits of area in the parallelogram as there are

funits of length in y. The shape of the area represented by a

Sv^ector is arbitrary as well as its position; its magnitude and
aspect are determinate. For there is obviously no reason why
this representation should be confined to the areas of parallelo-

grams.

Ex. A force is represented in magnitude and line of action by the line ab.

The moment of the force at the point o is represented by

V . OA . AB.

Art. 24. The scalar of the product of three vectors is the

volume of the parallelepiped having conterminous edges equal to

the vectors.

The transformation

S . a^y=S . a(V^y+ S;8y) = S . aV/?y

shows that this scalar is equal to the scalar of the binary product
of a into V/3y—that is, it is the negative product of the projection

of a on the normal UYjSy to one face into the area of that face.

If rotation round a from ^ towards y is positive, the volume is

— Sa/3y, for the angle between a and JJY/3y is then acute, and
SaUV^y is negative.

Ex. 1. If Sa/3y= the vectors are coplanar, and conversely.

Ex. 2. Prove that interchange of any two vectors changes the sign of

Ex. 3. Prove that

Sal3y = Saa'a" if /3=xa-\-a, y= 7/a-\-za'+ a".
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Ex. 4. Prove the identity,

S(S -a){8- 13)(8 - y) = S^y8 - SayS + Sa(38 - Sa^y.

Ex. 5. Prove that ± Sab . ac . ad is six times the volume of the tetra-

hedron ABCD.

Art. 25. The formula

Y,aY/3y= ySal3-/38ya (l.)

is very important owing to its frequent occurrence. Since the

vector on the left is perpendicular to V/8y it must be coplanar

with /5 and y—that is, it must be of the form x^-\-yy where x
and y are scalars. But the vector is also perpendicular to a.

Therefore Sa{x^-{-yy)= 0, so that the ratio of it; to ^ is

determined; and the vector must be parallel to

'w;(/5Say-ySa^).

It remains to determine w to satisfy

V . aV/3y= w{p8ay- ySa/3).

Multiply by ya and take the scalar part of the product, and we
have

S . yaV . aVpy= w^yafiSay= Sya{aY/3y- SaV/3y) = -SyaSa/3y,

so that tv= —1.
The proof here given is merely illustrative of a general method.

Hamilton's proof is as follows. Since

2V . aV/3y = aV/3y- V/3y . a = a(^y- S/3y) - {^y- S/3y)a

= a^y— /5ya;

on adding the pair of cancelling terms ^ay— /3ay, we have

2V . aY/3y- (a/3+ /3a)y- /3(ya+ ay)= 2ySa^- 2/3Say.

Adding aSfiy to each side of the formula, we find the relation

V.a^y= aS/3y-^Sya+ ySa^, (n.)

which is occasionally useful.

Ex. 1. Prove that

V . Va/3VyS= aS^yS-/?SayS=8Sa/5y-ySa/38.

Ex. 2. Prove that S . YafiVyS= SaSS^y - SaySj8S.

[This is S . aVfBYyS.]

Ex. 3. Find the direction of the common edge of the planes parallel to

tt and /3 and to y and 8.

[The normals to the planes are parallel to Ya/? and VyS.]

Ex. 4. Prove that S . Y/SyYyaYafS= - (Sa/3y)2.

Akt. 26. The formula

/oSa/3y= aS^yyo+ /3Syap+ ySa/3yo (l.)

is of great importance, as it enables us to resolve a vector along

three vectors a, /3 and y which are not all in the same plane. ^It
is virtually proved in Ex. 1 of the last article.
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Otherwise assume, as we may, provided Sa/3y is not zero,

and operate by Sj8y (that is, multiply by /3y and take the scalar

of the product). This gives S/3yyo = xSa^y.
Another valuable formula is

pSal3y = Y,SySap+ YyaSI3p-\-Yal3Syp, (ll.)

which enables us to resolve a vector p into components at right
angles to the planes of a/5, fiy, and of ya. Assuming

p= xYPy-\-yYyai-zYa/3

and operating by Sa, S^ and Sy, the unknowns x, y and z are
found.

Ex. 1. Prove that aSfSyp + /SSyap + ySa/3p = if Sa/3y= 0.

[Here aa+ bf3 + cy = 0, where a, b, c are scalars. Operate by Va, V(3
and Vy in turn, and we find Yf3y : a=Vya : b= Va^S : c]

Ex. 2. In the same case, VygySa/o+VyaS^p +Va^Syp= 0.

Ex. 3. Ehminate p between the equations

Sap= l, Sy8/o = l, Sy/)= 1, S8/o = l.

Ex. 4. Eliminate the scalars a: and y from the relation

a^3/+ /3x'+ yy+ 6 = 0.

Art. 27. To resolve a vector along and perpendicular to a
given vector, observe that

p = A.X-i^ = XSX-V +AVX-V (I.)

In case the essentials of a problem turn on two vectors a and
/3, put X = Ya^, and the transformation

p = Ya^S(Va/3)-V+ aS/3(Va/3)-V-/3Sa(Va/3)-V ....(n.)

will often be found useful. (Compare Art. 25.)

An expression of an analogous type is

_ Spa/3— aS/3p 4- /3Sap
^~

Vajg
•

Art. 28. The squared tensor of /3— a is

T(^-a)2 = T/32+ 2Sa/3+ Ta2 (l.)

for (^-af= l3^-pa-al3+ a^

Hence for a plane triangle

a2+6^-c2 = 2a6cosC.

The identities Va/3= Va(^-a) = V^(^-a)
lead to. the remaining fundamental formulae of a plane triangle,

^
sin A_ sin B _ sin C

a b c '
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Ex. 1. If T(p-a)= T(p + a), prove that Sap = 0.

Ex. 2. The equations

P=K-; S^^-^= 0; T{a+ ap)=T(aa+p) ; Tp=Ta
a p p + a \ r/ \ ry I

are consequences one of another.

EXAMPLES TO CHAPTER III.

Ex. 1. If Y .qa= 0, where g is a real quaternion and a a real vector,

show that

Sq = 0, Yq\\a.

Ex. 2. The relation Y .qa=Y .aq implies a^= a'2, and S . (a — a')Vg'= 0,
\

where Sq does not vanish. It may be written in the form

(a-a')Sq =Y.{a+ a')Yq.

Ex. 3. Provided Sg is not zero, the relations a' = qaq~'^ and Y .qa^Y .a'q

are equivalent.

Ex. 4. If a'= qo-q~^, the quaternion q is expressible in the form

xa 4- y
« =^aW'

,

.

where x and y are arbitrary scalars.

Ex. 5. The same quaternion may also be written

q= u+ v{a + a') + ivYaa,

provided a single relation connects u, v and w. Find it.

Ex. 6. If al= qaq~^ and (^'= qf^q~^i show that to a scalar factor

Verify that this agrees with the expression given in the last example.

Ex. 7. If three vectors a, 13', y' are derived by a conical rotation from
three others, a, /? and y, prove that it is possible to determine scalars ,r, 1

^ and z, so that
'

x{a' -a)+^/(/3' - f3) + z(y -y)= 0.

Ex. 8. If a, f3 and y are any three vectors, and if q is any quaternion,
we shall have

S .
^a^-i/5y+ S . ql3q'^ya+ 8. qyq^^afS = S . q-^aq/Sy+ S . q~^/3qya+S . q-^yqajS.

Ex. 9. If three vectors satisfy the relation

they are mutually at right angles. If they satisfy

(afiyy^+a^fSY,
they are coplanar.

Ex. 10. Given that Ya^y8= 0, prove that the four vectors are coplanar,

and show that the condition is equivalent to

--.-.a T-r oU~^=±U-.

Interpret this result. f

Ex. 11. In any product of coplanar vectors aia2a3a4 . . . a^, it is allowable
to transpose among themselves in any way the vectors with even suffixes

and also to transpose the vectors with odd suffixes among themselves.



CHAPTER IV.

BAPPLICATIONS TO PLANE AND SPHERICAL TRIGONOMETRY.

Coplanar Versors.

Art. 29. In dealing with rotations in a plane, let i be a unit-

vector perpendicular to the plane, and let angles be measured in

the sense of positive rotation round i. If

Ug' = cos A+ f sin A, (i.)

the versor U^ has its angle equal to A, provided A is less than
two right angles, and generally whatever magnitude the angle A
may have, z.^ = A+ witt where r}i is an integer. Hamilton calls

A the amplitude of the versor \Jq, the new name being intro-

duced to avoid any confusion as to what is meant by the angle

of a versor. (Compare Art. 17, p. 13.)

It follows from the laws of multiplication of quaternions

(Art. 21, p. 17) that

U(5r) = cos(A+ B)+ isin(A+ B) '\

if Ug = cos A+ i sin A, Ur = cosB+ f sin B,j

provided A and B are less than two right angles, and this result

evidently remains true when A and B are any angles whatever.
But in full, since ^^ = _ i^

Ug . Ur= (cos A-hf sin A)(cosB-f f sinB) ^ .

= cos A cos B — sin A sin B -}- f (sin A cos B -|- cosA sin B),J

and therefore on comparison with (ii.), since JJ(qr) — JJq . 17?% we
obtain the formulae for the expansion of cos(A-t-B) and of

sin(A-l-B) on equating separately the scalar and the vector parts.

The angle of (Ug)" is 7i times that of JJq, provided n is an
integer and nLq<^'jr', and generally when n is an integer, the

amplitude of (Ug)" is n times that of U^. If the amplitude of

Ur is one rn}^ that of Ug, and if the two versors are coplanar, Ur
is one of the m*^ roots of U^ ; or we may write

1
Ur= (Ug')'" (IV.)
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- n
More generally the amplitude of (U5)™ is — that of Uq, and in

a similar manner we can interpret the expression (Uqf, where x
is any scalar, as a versor coplanar with Ug, and having its ampli-

tude X times that of Vq. If A is the amplitude of JJq, we may
write

2a

Ug' = £", (v.)

2a
for the amplitude of Vq is — times a right angle, and the ampli-

TT

tude of f is a right angle ; and still more generally, any quaternion

may be expressed as a power of a vector,

q = a\ where a = UVg.Tg^, t =^ (vi.)

Concerning the n^^ roots of a quaternion q which are coplanar with it, it

must suffice to remark that these are n^ in number, being the solutions of

the equations,

„ n.n-l „ ^ ^ 71. n-1 .71-2 .71-3 „_i i ,
.

x---^-^- x-y +
1.2.3.4

"^ y+ etc. = a

^^^^ ^

71 ^ . 71. 71-1. 71 -2. . ^S, ,
,

1
^^ ^^

1 2 3 ^ ^ ^ '

if q= a+ cb and yq= x+ i^, since a+ tb= {a:+ l7/)''

;

so that in addition to the 71 real quaternion roots whose amplitudes are

1 1 27r 1 2(n-l)7r . ^.
~Lq, -Lq +—, ... Lq +^ ^, (viii.)
71

^'
71 ^ 71^ 71 ^ n

there are 7i{7i—\) imaginary quaternion roots corresponding to the imaginary
solutions of the equations (vii.).

The exponential e«, where g' is a quaternion, is defined by the formula,

«''=l+^ +^+^p^3+ etc. ;
• (IX.)

and because quaternion multiplication is not commutative,

ep.ea=v^.2^is not e^+'^=2^^-^, (x.)

unless q happens to be coplanar with p. In general, however, because Sq^

Yq, q and J^q are commutative in order of multiplication,

and also by the definition of e« it follows that

and thus Te«= e««, Ue?= e^'«= cos TV^ + UVg' sin TVg', (xi.)

substitution in (ix.) and separation of the scalar and vector parts affording by
the known formulae for the expansion of a sine or cosine the second expres-

sion for Ue*.
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If we write q= \ogq', where q' = e^= e^"s^', (xii.)

we have by (xi.), S log 5-'= log T^', V log q'= log Vq'
;

and generally if jo and q are any two quaternions, we may define
pq^gqlogp^ (XIII.)

but as we shall not require much, or indeed any, acquaintance with the

logarithm or exponential of a quaternion in the sequel, we refer to Hamilton's
Elements of Quaternions for further details.

Ex. 1. Prove that a+ (3J— I is a square root of zero, where Ta= T^,
Sa/3-0.

[See Art. 67, Ex. 1.]

Ex. 2. Show that a product pq may be zero without having p or q equal
zero.

[If pq is a scalar, q must be proportional to Kp. The squared tensor of

V-T/o2+ p is zero. (Art. 22, p. 21.)]

Ex. 3. Show that a quaternion q satisfies an equation of the form
q^-\-2xq+ 7/=0 when x and 7/ are certain scalars.

Spherical Trigonometry.

Art. 30. If a, /3 and y are three coinitial and unit vectors

determining a spherical triangle ABC, the whole doctrine of

the spherical triangle is contained in the relation

^•"•^=1 (I.)
a y p ^

c'

/ C ^X

^V
A'

""

Fig. 20.

The vectors

a =UV^ = UV^y, /3'= UVya, y= UVa/5,

terminate at the vertices of the polar triangle, rotation round
these points from A to B, from B to C and from C to A being
positive; and in terms of these vectors the equation may be
written in the forms,

/5 a- • - =K ^ ;
(cos c+ y sin c)(cos 6+ ^' sin b)= cos a— a sin a. (ii.)ay p

Tving that rotation round OA from C' to B' is negative,
eor

y /3'= cos(7r- B'C')- a sin(7r- B'C) = cos A - a sin A,
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and thus on expansion of (ii.), we have

cos c cos h+ y sin c cos h-\-^' sin h cos c+ sin h sin c cos A
— a sin A sin h sin c = cos a— a' sin a (ill.)

The scalar part of this equation gives the fundamental relation

cos a = cos h cos c+ sin h sin c cos A
;

(lY.)

while the vector part is

a sin A sin h sin c = a' sin a-\-^' sin 6 cos c+ y' sin c cos 6. . . .(v.)

Operating by Sa on this vector,

sin A sin h sin c— — sin (xSaUVj8y= — Sa^y,

m that
«i^= «i^ =«4^= _.,_„S«/3y

.__^ (,.j)sma smo smc sm d, sin 6 sin c

Now (compare Art. 17 and Art. 25),

l=T(a/5y)^
^ ^^^

= (Sa^yf-(Vapyf= (Sa^yf- (aS/3y - /3Sya+ ySa/3)2

, =(Sa/3y)2-(a2S/5y2+/52Sya2 +y2Sa^2_2S^ySyaSa^),

and accordingly, in terms of the sides of the triangle,

— Sa/3y= + (1 — cos^a— cos^6 — cos^c+ 2 cos a cos 6 cos cy, .

.

.(vii.)

and thus the remaining fundamental relations are established.

2a. 2b 2c

Ex. 1. Prove that a'^/5^y^ = -l,

rotation round a from ^ to y being supposed positive.

B' a' y' 3' 2-?^
[For the supplemental triangle ^• — •^= 1, — = 7 "", etc. (compare

Art. 29 (v.)).]

Ex. 2. Deduce the relations

cos c + cos A cos B= COS c siu A sin B,

y sin c= a sin a cos b+ /? sin b cos a+Va^ sin a sin b.

Ex. 3. If P is any point on the surface of the sphere and q the foot of
the perpendicular let fall from this point on the side ab, prove that

cos PC sin c= cos pa sin a cos b + cos pb sin b cos a+ sin pq sin c sin a sin b.

Ex. 4. Taking p at the centre of the circumscribing small circle, prove
^

2 cot R sin 1^ 2 = sin A sin b sin c,

where R is the radius of the small circle and where S is the spherical excess.

Ex. 5. Show how to represent versors and their products by versor
angles analogous to the versor arcs of Art. 21, p. 16.

—Iir—c) ?^ ?? _
[By Ex. 1, y"" =a''/5', so that if the versor a' is represented by a

2b

directed angle a at the extremity of the vector a, and if /?' is similarly
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represented by a directed angle b at the extremity of /? ; the product is

represented by the directed external angle tt - c at the extremity of y.

Fig. 21.

To construct the product of two versors 'p and q on this plan, let a be the
extremity of UVp, and b of UVg. Draw the great circle ab, and the great

circles ac and bc making the angles Lf and Lq with ab, and intersecting in

the point c, round which rotation from a to b is positive. Then 'pq is

represented by the external angle at c. To construct the product qf^ a
point c^ must be similarly found below ab, so that rotation round it from
b to A is positive. The method may be extended to spherical polygons
{Elements of Quaternions^ Art. 313).

Art. 31. In his fifth and sixth lectures and in Art. 297 of the

Elements of Quaternions, Hamilton has developed at consider-

able length a curious and interesting theory connected with the

"fourth proportional" ^,a~^y^ to three given vectors and with
the area of a spherical triangle ABC, whose sides are bisected in

A^, B^ and C^ by the extremities of these vectors.

The vectors a, (3, and y terminating at the vertices of ABC, and

P

Fig. 22.

^A,, B^, C^ being the middle points of the sides of the triangle, we
have the relations,

'k-y-(i\^- A_«_M^ y.-^-(§\K ^^
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and from these relations or directly, we find

Hence a= ^,a,yfly, ' ^a, " '/3, " ^ =
fifl,

" ^yp.y, ' ^afi,
" ^ =J9ap

"

'

if i5=AarY }
(in.)

is the " fourth proportional " to /3,, a, and y^, so that the conical

rotation produced hy 'p{ )p~^ leaves the vector a unchanged, and
therefore + a is the axis of the quaternion p.

Again we have

so that the conical rotation in question produces the same effect

on the vector y^ as the conical rotation round P—the pole of the

great circle A^B^—through twice the angle of /5,a, ~ ^. And because

the point C^ can be converted into the extremity oipy;p~'^ by a

rotation round P or round A, this extremity must be the reflection

of C^ with respect to the great circle PA. Thus the angle of the

quaternion p is C^AL if + a if^ its axis, while it is C^AP if — a is

its axis, and we proceed to show that the former alternative

is true.

The point P being the pole of A^B^, the angles L and M are

right. Taking CN perpendicular to A^B^ it follows that the

triangle NCB^ is equal to LAB^ and that NCA^ is equal to MBA^,
for NCB^ has the side B^C, the angle CB^N and the right angle

CNB^ equal respectively to the side AB^, the angle AB^L and the

right angle ALB^ of the triangle ALB^. Hence AL is equal to BM,
both being equal to CN ; the triangle APB is isosceles, its equal

sides being complements of AL or BM; and the equal external

angles C^AL or C^BM of this triangle are equal to J(A4-B+ C),

C>L + CBM being A+ B + B>L + A^BM = A + B -fB^CN + A^CN.

Moreover, if we join PC^, the angle PC^A will be right, C^ being
the middle of the base of the isosceles triangle APB; and the

angle C^PA will be equal to L^^a'^, for it is J^BPA or JML or

A^B^, since by the equality of the small triangles MA^ = A^N and
NB^= B^L. Hence by the construction of Ex. 5, Art. 30, the angle

C^PA represents ^^a,"^ and AC^P represents y^, so that C^AL repre-

sents p or /3^a^~^y^, and therefore

z.p=^/3,a,-iy.= J(A+B+ C), UV^ = a (IV.)

Again we have this remarkable transformation by (i.).

I
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so that for the new quaternion,

^'-©'(i)'©'
-)

^p'= J2 = KA+ B+ C-7r), VYp' = a, (VII.)

if 2 is the spherical excess of the triangle ABC, because

Lp'= Lpa~'^= Lp —

EXAMPLES TO CHAPTER IV.

Ex. 1. If a is a unit vector at right angles to /?, show that

where tc is a scalar.

Ex. 2. If a, /3 and y are unit vectors, mutually at right angles, ^^

Ex. 3. Given two sets a, f3, y and a', /5', y' of mutually rectangular unit
rectors in the same order of rotation, so that a'==+(3'y' if a=+^y, show
that we may connect the two sets by the series of relations

(1) yi = y, ai = acosVr+ ^sin-\/r, ^j = - a sin i/r+ /? cos -^/^
;

(2) /^2= A) 72= 7iCOS^+ ajsin ^, 03= -yisin ^+aiCOS ^ ;

(3) y' = y.2^ a = a^ cos </>+ ^2 ^i^ ^1 (^' — ~ ^2 ^i^ <^+ i^2 ^^^ 4* >

and draw a figure to exhibit the Eulerian angles \/r, $ and (p.

Ex. 4. The conical rotation q( )q~^ which converts the first set of vectors
of the last example into the second is determined by the versor

q — co^^6 cos i(<^+ V^) + 7 cos I ^ sin ^ (^ + i/r)

+ a sin ^ ^ sin J(<^
- i/r)+ /3 sin ^ ^ cos |(^ -

V^)

(see Tait's Quaternions, Art. 373); while other expressions for the same
versor are

<l={{y'' P)'^yy -{y^I^T -y"", and q=y''^-^y-".

Ex. 5. Given in order n coinitial vectors a^, a2, . . . a„, it is required to

draw n planes, each through one of the vectors, so that the lines of intersec-

tion of each plane with the two adjacent may be equally inclined to the
•contained vector. Prove that the vector along the intersection of the planes
through ttj and a^ is parallel to Va„a„_i ... ui.

Ex. 6. Show that

/ccU/yU/mi_U(y + a) U(a+ )8)_ a U(/3+ y)

\y) \^J \aj -UOS+ y)* a U(7 + a) U(a+ ^)

^/y+ g a+y8 jg+ yU
"'j

Vi8+ y* y + tt' a+ y8/
'

where a, /3 and y are any three unit vectors.

J.Q. C
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Ex. 7. If a, ^, y and 8 are the vectors from the centre to four pointd

A, B, c and D on a sphere of unit radius, show that

2A 2£ 20 2D

when the quadrilateral is uncrossed, and when rotation round an internal

point from a to B to c to d is positive.

(a) Hence

(cos A+ a sin a) (cos b+^ sin b)= (cos d - 8 sin d) (cos c - y sinrc).

(6) Also

cos a cos B - sin a sin b cos ab=cos d cos c - sin d sin c cos cd
;

and if p is any fifth point on the sphere from which perpendiculars pq and
PR are let fall on the arcs ab and cd,

sin A cos b cos ap+ cos a sin b cos bp+ sin a sin b sin ab sin pq

+ sin c cos D cos cp+ cos c cos d cos dp 4- sin c sin d sin cd sin pr= 0.

(c) Examine the cases in which p is taken to be the pole of a side or of a

diagonal, or the point of intersection of ab and cd. (See Elements of
Quaternions, Art. 313.)

Ex. 8. If a'=UV/3y, ^'=UVya, Y= VYa(3, where Ta= T/5=Ty= l,

and Sa^y <0, prove that a= UV/5'y', ^=UVyV and y = UVa';S'.

(a) If A, B and c are the supplements of the angles between the pairs of

vectors /5', y'
;

y', a ; and a, j3\ deduce the relation

2A 2B 2C

a^ f^^ y^ = -\.

(b) Show that this equation may be transformed into

eAa^e^P.eOy= -1.

(c) Examine whether it may be further simplified to

and carefully state your reason. (Bishop Law's Premium, 1898.)
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CHAPTER V.

GEOMETRY OF THE STRAIGHT LINE AND PLANE.

Art. 32. The vector p = OP being drawn from a fixed origin

and being regarded as variable, the equations

Spa = 0, and Yp^ = 0, (l.)

represent respectively the plane through the origin perpendicular

to a and the line through the origin parallel to ^.

If y = 0C, ^ = 0D, the equations of a plane through C and a
line through D are respectively

S(/o-y)a= 0, and Y(p-S)l3= i) (ll.)

These may be replaced by

p= y4-aT, and p= S+ ^t, (ill.)

where r is an arbitrary vector subject to the single implied

condition Sar = 0, and where t is an arbitrary scalar.

The point E in which the line intersects the plane is the

extremity of the vector,

. ^S(^-y)a
^
VaV(y-(5)/5

, ,

The first of these expressions has been found by substituting

S-\-^t for p in the first equation (ii.) of the plane. The second
has been found by replacing p by y+ ar in the first equation of

the line. Another expression for the vector to the same point

of intersection is

8a/3 ^ ^^

Fron^ (IV.) we have the intercept DE = e— <5 on the line, and
the interval CE = e— y in the plane between the fixed points

and the point of intersection.
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If we make in (iv.), /3 = a, we find the foot of the perpendicular

from the point D on the plane to be at the extremity of the vector

OM = ^=^S-a-'^S(S-y)a or />i = y+ a-^ V(y-^)a, ...(vi.)

since the line being now parallel to a is perpendicular to the

plane.

The vector perpendicular from the point D on the plane is

DM= />t-^= -a-^S((5-y)a = aSa-^DC, (VII.)

and it will be noticed that we may directly obtain the vectors

DM and CM by resolving the vector DC along and perpendicularly

the vector a. (Art. 27.)

If in (iv.) we replace a by ^, we find the foot of the perpen-

dicular from the point C on the line to be the extremity of

the vector

ON = i. = ^-/3-iS((5-y)^ or ,. = y+ /3-iV(y-(5)/3, (vill.)

because now the plane is perpendicular to the line. The vector

perpendicular is

CN = ^-iV(y-^)/3 = ^-iV/3CD (IX.)

In general the normal to the plane (ii.) makes with the line an

angle determined by

cosa=SU^, or sine = TVU^, or tan0=-?^; ...(x.)
a a D V /5a

and if we are required to draw a plane through the point C
making a given angle with the line, we have

U^= cos OJJa+ sin OVra ; while Va = cos ^U^+ sin 0Ut/3, . . .(xi.)

if the line is to be drawn inclined at a given angle to the plane.

In these equations the vector r is arbitrary, subject to the implied

conditions, which are Sra = and St/3= respectively.

Ex. 1. Two objects, b and c, are observed from the origin of the vector a
to be in the directions ij/5 and Uy, and from the extremity of a to be in the

directions U^' and Uy'
;
prove that the vector bc is

and point out the conditions implied in this expression.

[For the point b we have ^U/?= a+ ?/U/5', and therefore

^VU^^'= VaU^'.]

Ex. 2. Four points a, b, c, d are viewed from a fifth point p. Prove that

they appear to form a parallelogram abcd if

U(Upa+ Upc)= U(Upb+ Upd)
;

a rectangle if Upa+ Upc = Upb+ TJpd
;

and a square if in addition SUpa . pb= SUpb . pc.
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[The first condition requires the diagonals ac and bd to appear to bisect

one another. The second requires that they should also appear to be equal,
and the third imposes the additional condition that adjacent sides should
appear to be equal.]

Ex. 3. Find the equation of the locus of a point equidistant (1) from two
fixed points, (2) from two fixed planes.

Ex. 4. The extremity of the vector p is projected from the extremity of

the vector a into a point on the plane SA/3 4-l=0. Prove that this point
lies at the extremity of the vector

VAVap+(/o-a) •

SA(a-p) •

Art. 33. The equation of a plane tlirough the points C, C', and
of a line through D, D', are respectively,

S(^-y)(y^y)a = and Y{p- S){6' - S)^0; ........(I.)

or S(py+yy+y»a = and V(p^+ ^(5'+ (5» = ; (ii.)

or

the plane being determined by the condition that the vectors CP
and CC' shall be coplanar with some fixed vector a, and the line

requiring that DP shall be parallel to DD'.

The various expressions given in the last article may be modi-
fied to suit the present case by replacing a and /3 by V(y'— y)a
and S'— S respectively.

The plane through CCf parallel to the line DD' is

S{p-yXy'-Y)iS'-S) = 0, (iv.)

because the normal to the plane must be perpendicular to the
line, so that SY{y -y)a .(S'-S)= 0, or a = x{y-y)-\-y(S'-S),
where x and y are certain scalars which disappear on substituting

in (I.).

If a plane can be drawn through CC' perpendicular to DD', the
equation YY(y-y)a.(S'-S) = 0, requiring S(y -y)(^'-o) = 0,

must be satisfied.

We may, without loss of generality, take a to be perpendicular
to CO', and as it easily appears that the plane for which in addi-

tion Sa(^'— ^)= is most inclined to the given line, we can verify

that the minimum value of

where the vector a is regarded as variable, and that the plane

-'• SV(p-y)(y'-y)V(y'-y)(^'-5) = ....(VI.)

is most inclined to the given line.
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Art. 34. The equation of a plane through three given points,

A, B, C, is
SpY{^y-\-ya-ha/3)= SaSy, (l.)

for the condition that PA, PB and PC should be coplanar reduces
to this expression ; and in this equation V(/5y+ ya 4- a/3) repre-

sents double the vector area of the face ABC, while — Sa/3y is the
volume of the parallelepiped having three conterminous sides,

OA, OB, OC (Art. 24). The equation may be taken as asserting

that if through the boundary of a vector area determined by
Y(/3y-\-ya+ al3) we draw vectors equal and parallel to OP (P being
any point in the plane), the volume of the solid thus constructed
is equal to that of the parallelepiped (Art. 23).

Writing for brevity, the equation of a plane in the form

the vectors
SXp = l, (ii.)

^ = S-X-\S\S-l) = \-^VXS-h\-\ and DM-X-i-X-^SX^ (ill.)

4re respectively the vector to the foot of the perpendicular from
a point D on the plane, and the vector-perpendicular from the

same point.

To find a plane equally inclined to three given lines OA, OB and
OC, we have

cos . TX = - SXUa = - SXU^ = - SXUy,

so that (Art. 26)

UX . secO. SUa^y= - V(U/!^y+Uya+ Ua/3),

sec ^= -TV(U^y+ Uya+ Ua^)(SUa/3y)-\

and the equation of the plane is

SyoV(U/3y+ Uya+ Va/3) = const,

or SyoV(^yTa+ yaT/3+ a/3Ty) = const

A plane equally inclined to the faces of the pyramid OABC is

represented by

Sp(aTV^y+ /STYya+ yTVa/3) = const
;

a plane cutting off equal areas on its faces is

Sp(UY/3y+UVya+UVa/5) = const,

while the equations of the planes cutting off equal intercepts

from the edges and from the normals to the faces have been
already found.

Ex. 1. Find a plane equally inclined to the bisectors of the angles of the

faces of the pyramid oabc.



SX/o= l, SiuLp = l is YpY\^= /ui'-\, or P = ^^^-y^ ;•••(!.)
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Ex. 2. The planes through an edge and through the bisector of the angle

of the opposite face intersect in a line.

Ex. 3. Find the equation of the plane bisecting the angle between a pair

of faces.

Ex. 4. Find the equation of a plane through an edge and normal to the

opposite face, and prove that three such planes intersect in a line.

Art. 35. The line of intersection of the planes

SX/0=1, S/X/9 = l

and that of the planes

S\p= l, Syu/o = is VpVA/a = yu, or yO=^^.

Three planes SXp= I, Sjmp = m, Si/p = n intersect in the point

pS\jULv = Y{liuLv{-mvX-\-n\iui); (ii.)

and the condition that the planes should intersect in a line is

Y(lijLv+mv\-\-nXiuL)= 0, (iii.)

if I, m and n are not all zero. If they are all zero, the condition

is SXiuLv= (IV.)

Four planes intersect in a point if the condition

S(//)tj/C7— mXi/trr+ tiXyuCT— p\/ii/)= (v.)

is satisfied, the equation of the fourth plane being Spz:^ =p.
The conditions of intersection (iii.) and (v.) may be replaced

by the pairs of simultaneous equations

x\+ yiuL-\-zv = 0, xl-^yin+ zn = 0; (vi.)

and x\-{-yiuL-\-zv-\-wTo = 0, xl-\-ym-\-zn+ivp = (vii.)

respectively, the compatibility of the equations (vi.) or (vii.)

being equivalent to (ill.) or (v.).

Art. 36. Given a pair of lines

V(/o-y)a= 0, or p^y+ ta', and V(p-y )a =0, or p = y-\-fa, (l.)

the vector from a point P on the first to a point P' on the second is

TF'=y-y+fa-ta (ll.)

If it is possible to select the scalars t and f so that this vector

may vanish, the lines intersect and the condition of their inter-

section is

- '4 S . PP'Va'a = 0, or 8(7 - y)a a = 0, (ill.)

P and P' being arbitrary points on the lines.
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Resolving the vector PP' into two components, parallel and
perpendicular to the vector No!a, which is at right angles to the
directions of the two lines,

pp'= VaaS(VaaO-^PP'+ VaaT.(VaaO-'PP^

= Vaa'S,^,+aS^,PP'- a'S v,^,PP',
V aa \ aa \ aa

and substituting from (ii.) on the right,

PP'= Vaa'SV^+a(Sv^(y-y)-0Vaa \ Vaa ' ' /

Thus the line joining the arbitrary points has a fixed com-
ponent perpendicular to the directions of the two lines, and
suitably selecting the scalars t and t' in (iv.) we see that

(
(V.)

OP„'= y'+ a'SY^,(y'-y)
J

are respectively, the vector-perpendicular to the two lines, or the
vector shortest distance from the first line to the second, and
the vectors from the origin to the feet of this shortest vector—the
points Pq and P^'.

Ex. 1. Verify that PoPo'= oPo'-oPo in equation (v.).

Ex. 2. Draw a line through a point (e) to intersect two given lines

V(p-y)a= 0, V(p-y')a'= 0.

[The line is parallel to Y . V(€ - 7)aV(c - y')a\ See (iii.).]

Ex. 3. The locus of a line which intersects three given lines is repre-
sented by

S.V(p-y)aV(p-7')a'V(/)-/)a"= 0.

(a) Reduce this equation to the form XY=ZW, where X, 1", Z and W
are planes.

Ex.4. Writing o-^Vpip^j T=A>2-Pi,
prove that o- and t are merely multiplied by a scalar, if for p^ and p^ are
substituted the vectors to any two points on the line of their extremities.

{a) Conversely, given any two vectors, a- and t, satisfying the relation

ScrT=0, show how they determine a line parallel to t.

(6) In this notation any two lines may be denoted by the symbols (o-, t)
and (o"', t'). Prove that the lines intersect if

Sa-T' + So-'T=0.

(c) Any scalar relation homogeneous in the pair of vectors o- and r
imposes a single condition on a line.
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{d) If the planes SAip + l=0, SA2P+1=0 contain the extremities of th&
vectors p^ and po, show that

where u is some scalar.

(e) Hence any relation homogeneous in the pair of vectors a- and t when
equated to zero may be expressed in the forms

/(cr,T)= 0, f(VpiP2,P2-pi)=0, /(A2-A1, -VAiAo)= 0.

(/) According as the equation /(cr, t)=
is equivalent to one, two or three scalar equations, it represents a complex,
a congruence or a regulus of right lines, and the constituents of the vectors

a- and t, when resolved along three mutually rectangular directions, are
Pliicker's coordinates of a line. (See Salmon, Geometry of Three DiTnensionSy

Chap. XIII., Section 11.)

(g) The lines of a complex /(cr, t)= (/ being now a scalar function), which
pass through a point, the extremity of the fixed vector pi, generate a cone

/(VpiT,T) = 0;

and the lines which lie in a fixed plane, SAip+ l=0, envelope the cone whose
vertex is the origin and which is the reciprocal of the cone

/(o-, -VAiO-)= 0.

Art. 37. The vector to any point on the line joining two
given points A and B is

o'-"'-^ (.-.

t being a variable scalar. If P^ and P^ are any two points on
the line, their vector distance is

^i''^ 14.^^ 1+^^ (I4.^^)(l +y ~(l+g(]+y"V"7

and the anharmonic ratio of any four collinear points is

^ ^^ '
*'- p^p^ . p^p^

-
(t,-x,)(t,- tj

- ('"•>

In particular

(APBP-)-^^
-i)(o-n-? ^'^-^

More generally, the anharmonic ratio of any four points

Qij Q9, Qs and Q^ collinear with any two points P', P", of the range,

«^-^2|±-£, , «,^,.^,.|=mza. ,,,

The two ranges (i.) and (v.) are homographic.

Ex. 1. If the range apbp' is harmonic, prove that

— +— =— or -I_ +-i_=__2
AP AP' ab' p~a p -a~ /3 — a
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Ex. 2. Any two homographic ranges situated on a common line,

_ aa+ th(B t
_Gy+ tdS

^~ a+ tb ' P~
c+ id'

may be simultaneously reduced to the forms,

€ + 87] , €€ + sri

''==1+7' ''=^+7'

Ex. 3. Show that the vectors c and t) satisfy the equation, ^
«c;(a-€)(8-€)-6c(^-€)(y-c)= 0.

"

-^
Art. 38. In many problems relating to a tetrahedron, it is convenient to

have the equations expressed in a symmetrical manner, and some of the

following relations will be found occasionally useful.

If the vectors X, fx, v and To are the vector areas of the faces of a tetra-

hedron ABCD we may write

v=Y(a^+ f38+ 8a), Tn=-Y{af3+ f3y + ya). j
^

'^

These vectors are independent of the origin, and their sum is zero, or

SA= A + /x+ v +n=0 (ii.)

Again, if I, m, n, p are the sextupled volumes of the pyramids subtended
at the origin tjy the four faces,

l= S(3y8, m=-SayS, 7i= Sa/38, p=-Saf3y; (m.)

and their sum is the sextupled volume of the tetrahedron, or

^l= l-{-7n-\-n+p= v, (iv.)

and is independent of the origin. Also,

^la= la + m/3 + ny-\-p8^0 (v.)

Changing the origin to the extremity of the vector w, and putting

a'= a-co, etc., the volumes subtended by the faces at the new origin are

,"= S/5y8'= S(/5-a>)(y-o>)(8-w), etc.,

or r= l — So)Xy m'=m — &o)iJLf yi=7i — So}v, p'=p — S(t)7n (vi.)

But still (by v.),

2ra'= 0-2(^-StoX)(a-a)) = 2^a+ (o2^-2aSwA + Sw2A,

and this reduces by former results to the new relation,

(o^l+ ^aSo)X = 0, (vii.)

which holds for all vectors w. Operating on this by Sw', we may write the

result in the form, S(o(a>'2^-}-2ASaw')= ; and, because w is arbitrary, the
part within brackets must vanish. But a>' is also arbitrary, and accordingly,

for all vectors oj, we have
w2^+ !2ASwa= (viii.)

Again, it is easy to see that

:2aA = aA + ^/x+ yi' + 8^=-3i? = :SAa; (ix.)

and, for verification, it is sufficient to take the terms in a^y, which are

aV/3y - /3Vay + yVa^= - 3^.

The sum 2aA is independent of the origin.

On the whole, we have

2A= 0; 1,1= V ; 2^a= 0; — wv=2ASwa= 2ttS(oA ;
— 3v= 2aA = 2Aa. ...(x.)



Airr. 40.] TETRAHEDRON. 43

It is sometimes convenient to employ the vector perpendiculars from the
vertices on the opposite faces instead of the vector areas. If a,, ;8^, y, and 8,

are these vectors, it is easily seen that

v= a^\= j3,fx=^y^v= 8p, (xi.)

because, in fact, the equation of the face bcd may be written

Sp\= l, or S(p-a)X= v, or S(p-a)a-^= l.

Thus (x.) gives

^~=0,yi= V', ^la= 0; -(ov= 2iSa>a=2aS-; -3=2-= 2ia....(xil.)
a, ' a, a, a, a,

Ex. 1, Prove that the vector sides of the tetrahedron are given in terms
of the vector areas of the faces by the relations

YXp.=.{y-8)v; YXv=-(fi-S)v; YXr^=(/3-y)v;

YiJLV= {a-B)v; V/xtTT= - (a - y) y ; Yvm= (a-/3)v;

and show how to connect the rule of signs with that for the expansion of

a determinant of the fourth order.

Ex. 2. Show that

^ixvzu= SXv^y= SA/>tt7= - SXfMV = v'^.

Ex. 3. Given the magnitudes of the areas of the faces of a tetrahedron,
show that the directions of the normals UA, Uju, and Uv to three of the
faces must satisfy the relation

TW

=

TX:^+ T/X2+ Ti/2 _ 2TfxvSVfx,v - 2Ti'ASUvX- 2TA/xSUAiit.

Art. 39. Any five vectors are connected by relations of the form

aa+ bfS+cy+dS+ee^O, where a+ b +c+d+e=0 ',
(i.)

and if the vectors are drawn from a common origin o, and terminate at the
five points a, b, c, d, e,

a:b:c :ci?:e= (BCDE) :-(acde) :(abde) :-(abce) :(abcd), (ii.)

where (abcd) is the volume of the tetrahedron determined by the four points
A, b, c, d.

To prove this, remark that if

a{a-€)+ b(f3-€) + ('{y-e)+ d(8-e)= 0,

the ratios of the four scalars a, b, c and d have the values defined by equation
<n.). (Compare Art. 24, Ex. 5.) The fifth scalar e is -(a+ b+ e+ d).

It should be noticed that the five scalars are absolutely independent of

the origin of vectors.

Ex. Any five quaternions are connected by a relation of the form

sp+ 7/q + zr+ im+ vt=
where x\ y, z, w and v are scalars.

Art. 40. Hamilton has elaborated a lemarkable system of coordinates
which he terms " Anharmonic Coordinates," the nature of which we proceed
to explain.

In accordance with the last Article we may write any vector op in terms
of the vectors to four points a, b, c, d in the form

xaa+ iibR+ zcy+ wdS /^ \op= p= ^^—9 '—,— \J')
xa + i/b +zc+ wd
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where a, 6, c and d are arbitrarily assumed constants and where x, y, z and
w are the anharmonic coordinates in question.

The point u at the extremity of the vector

o„=,=2^±M±^s, („.)

is called the unit point, its anharmonic coordinates being equal to unity.

The point i\, whose coordinates are x+ tx', y-{-ty\z+ tz\ w + tiv\i^ collinear

with the points p and p', for

0P/= -V r^v '• (ill-)
^xa+ tLxa

And, in particular, the planes cdp and cdu cut the edge ab in the points

determined by
xaa + yhjS aa+ bB , .

OPi,= rV^, 0Ui9= TT^, (iv.)

for Pi2, P and P34 are collinear, and also Ujg, u and U34, where

_ zcy + wd8 _cy + d8

Denoting by (cd.apbu) the anharmonic ratio of the pencil of planes
through the edge cd and the points a, p, b and u, we have

(cD . apbd) = (AP12BU42) = -. ;
•(^^•)

and similarly, (ac . bpdu)= -, etc.

The ratios consequently of pairs of the coordinates, x, y, z, 2v of a point p
are expressible as anharmonic ratios ; and the coordinates are unchanged by
any linear transformation, it being understood that the unit point undergoes
the same transformation as the vertices of the tetrahedron.

To suit special circumstances, the unit point may be specially selected.

It may, for example, be taken at the mean point of the tetrahedron, and
then a= b— c= d—\.

Ex. 1. The vector p of any point p of space may, in indefinitely many
ways, be expressed under the form

_ __xaa-\-ybl3+ zcy+ vjdS+ ve€
"

xa+yb+zc+wd+ve

where aa + bfS+ cy + dS+ ee—O, a+ b-{-c+d+e= 0.

[In terms of the four vectors a, /3, 7, S, the anharmonic coordinates of;

the point are x - v^ y — v, z — v and 20 — v. See also Art. 39.]

Ex. 2. The equation of a plane in anharmonic coordinates being

lx+my-{-nz+pw= 0,

prove that the ratios of the coordinates of the plane I, m, n,p are expressible

as anharmonic ratios.

The line ab cuts the plane in the point oLio= r^, and the anhar-

monic ratio {axs^^i,^,^— —y

Ex. 3. Find the condition that the planes I, m, n, p and V, m', n', p
should be parallel.

[The plane at infinity is ax+ by+ cz-{-dw=0.']
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EXAMPLES TO CHAPTER V.

Ex. 1. The equation of the plane through the origin perpendicular to the

vector a may be written in any one of the seven forms,

a p-a a 2 a a \a/

T(p + a)= T(/)-a) ; Spa= 0.

Ex. 2. The equation
T(p-a)= T(p-/3)

represents the plane bisecting at right angles the line ab.

Ex. 3. The equations

ue=i, u^=-i, ('u^y=i
a a \ a/

i-epresent respectively the half-line through the origin, having the direction

of the vector a, the half-line having the direction of - a, and the whole line

parallel to a.

Ex. 4. The equations

SU^ = SU^, SU^=-SU^
a a a a

represent the two sheets of the cone of revolution, with o for vertex, oa for

axis, and passing through the point b (Elements, Art. 196 (4)).

Ex.5. The equation TV^=Tv2
a a

represents the right circular cylinder, of which oa is the axis and b a point.

Ex. 6. If A, B, c and d are the vertices of a regular tetrahedron having its

centre at the origin,
a+ l3+ y-\-8= ;

a2= ^2= etc, = - 3Sa/5 = - SS^y= etc.

;

TAB = 2v/fT0A.

Ex. 7. Find the area of a face of the regular tetrahedron and the volume
in terms of the vector from the centre to a vertex.

Ex. 8. The six vectors ± a, ± ^, ± y terminate at the vertices of a

regular octahedron. Find the conditions the vectors must satisfy, and deter-

mine the volume, area of face, length of side.

Ex. 9. If A, B, c, D are any four points in a plane, the vectors a, /3, y, 5,

drawn from an arbitrary origin to terminate at these points, are connected

by a relation of the form,

aa+ bl3+ cy-hd8= 0, where a + b+ c+ d^O.

/ \ rm- ^ / /
aa+ bB cy + d8

(a) The vector oc'= 7'= ru= . j
^ ^ ' a+ b e+d

terminates at the point of intersection of ab and cd.

(6) If a' and b' are points similarly constructed on the remaining sides bc

and CA of the triangle abc,
^

Ac'

_

a ba' _b cb' _ c

, c'b~6' a'c c' b'a a
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(c) Hence deduce the equation of six segments,

Ac' ba' cb'_

c'b a'c b'a
~

(d) The right line b'c' meets bc in the point a", where

b—c h—c

(e) Hence a' and a" are harmonic conjugates to b and c.

(/) The equation of the six segments made by the transversal c'b'a" is

Ac' cb' ba"

c'b b'a a"c~

{g) The points a", b", c" are collinear, and the vectors a", (^" and y" are
connected by a relation,

la + mf3"+ ny", where l +m+ 7i— 0.

(h) The line ad meets b'c" in the point a'", where

"'— w_ «a-^^^ (<^ + ^)y' + (c+ a)/?'
~ "" a — d

~
2a+ h-\-c

(i) The points b'", c'", a" lie on the polar line of the point a with respect

to the triangle bcd.

Ex. 10. Let ABCD be any tetrahedron, and e any arbitrary point, the

vectors from an arbitrary origin to the five points a, b, c, d, e are con-

nected by the relation,

aa+ bl3+ cy + d8 + e€=:0, a+ b + c+ d+e=0.

(a) The line ae meets the opposite face in a', where

, / aa-\-ee bf3+ cy + d8
DA =a = = -^ '—T—-

a+ e b+ c+d
(b) The line a'b' intersects the line ab in the point,

aa — bfi

a — b

(c) The six points formed in this way form a complete quadrilateral.

{d) The vector to any point in the plane of this quadrilateral is of the

^°^^"^'
x{aa-b(i)^-y{aa-cy)-{-z{aa-d8)+ w{aa+ b(^+ cy + d8+ e€)

^~ x{a-b)+y{a-c)+ z{a-d)+ w{a+ b-irc+ d+e)

{e) The line ae meets this plane in the point a„ where

OA,= !

4a + e

Ex. 11. The tetrahedra whose vertices are at the extremities of the

vectors a, /?, y, 8 and aa, 6^, cy, d8 respectively are in perspective.

{a) Corresponding edges intersect in points at the extremities of vectors

of the type, aa{\-b)- (^b{\-a
)

a — b

(b) The six points thus determined form a complete quadrilateral.

(c) Prove that the equation of the plane of perspective may be written in

the form, :^±ab(c-d)Spaft-h^±(l-a)bcdSf3y8= 0,

the determinant law of signs being obeyed.

i
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Ex. 12. Determine a parallelepiped, having its vertices on the four line*

joining the origin to the points a, b, c and d, and having its centre at the

origin.

(a) If xa-\-vB+zy + io8

a paiallelepiped having its centre at p and its vertices on the lines pa, pb, pc^

PD, has its vertices at the extremities of the vectors,

p±x{a-p\ p±^{/3-p), p±z{y-p\ p±2'j{8-p).

(b) If a pair of edges are at right angles, the condition may be written in

either of the forms, g^y^g^'S' or ^'2+ .^'2= ^'2+ 8'2^

where, for brevity, a'=x(a-p), etc.

(c) The locus of a point p satisfying this condition is a quartic surface.

(d) If two pairs of edges are at right angles, the conditions may be
written as '2_./3'2 -,'2_S'2

(e) If the parallepiped is rectangular, the conditions are

(/*) The point, or points, satisfying these conditions are also given by

V(a-p)±V{f3-p)±V(y-p)±V{8-p)= 0,

and it may be shown that this is the condition that

T(a-p)±T(^-p)±T(y-p)±T(8-p)

should be a minimum.

(g) Another form of this condition is

SU.(p-^)(p-y)(p-8)=±SU.(p-a)(p-y)(p-5)
= ±SU.(p-a)(p-/?)(p~S)
= ±SU.(p-a)(p-/3)(p-y).

Ex. 13. Find the vector to a point p at which the faces of a tetrahedron

subtend volumes whose ratios are given.

Ex. 14. Find a vector equation for determining a point p at which the

faces of a tetrahedron subtend solid angles whose sines are in a given ratio.

Ex. 15. What is the condition in terms of the lengths of the sides of a

tetrahedron that two opposite edges should be at right angles to one another?

(a) If two pairs of opposite edges are at right angles, the third pair is also

at right angles.

Ex. 16. The vectors a, /3 and y are coinitial. It is required to draw
through the extremity of a a plane which shall cut the vectors in points
forming a triangle of given species. Show that the problem may be reduced
to finding scalars y and z, so that

n:(^fS-zy)=mT(zy-a)^7iTia-f/(3),

where l, m and n are given scalars ; and eliminate either 7/ or 5, so as to

obtain an equation in the uneliminated scalar.

Ex. 5:7, If the perpendiculars from the vertices of the tetrahedron abcd-

intersect, ''and if the origin is at the points of intersection, show that

Saj8= Say= Sa8= SfSy= S)88= SyS.
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Ex. 18. Given three points a, b, c, show that the three equations

S(p-a){l3-y) = 0, S(p-fi){y-a)= 0, S{p-y)(a- f3)=
represent a line which is the locus of the fourth vertex d of a tetrahedron
ABCD enjoying the property that perpendiculars from the vertices on the
opposite faces concur.

(a) Show that the point in which the line meets the plane of the triangle

ABC is the extremity of the vector,

Sa^y-aSa(^-y)-/3S/3(y-a)-ySy(a-^)
^

y{f^y + ya+ al3)

and express this vector in the form,

_ xa+ 7/(3 + zy
^~ x+y-\-z

(6) Show that the line may be represented by

_ Yfiyjt - 8/3y) + Yyajt - Sya) +Yafi{t - Sa^)
^~

Saf3y

Ex. 19. When the vector to a point p in the plane of abc is expressed ii

the form, ^ . ,n
, ^

^ x-\-y-^z

show that the ratios of ,r, ?/, and z are the ratios of the triangles pbc, pca, pab,

{a) Hence, if upper and lower signs correspond,

aT(^ - y) ± /3T(y - g) ± vT(a - ^)
^- T(/?-y)±T(y-a)±T(a-;8)

are the vectors to the centres of the inscribed and escribed circles of the"
triangle.

(6) Deduce the corresponding theorem for a tetrahedron, and find the

vectors to the centres of the inscribed and escribed spheres.

Ex. 20. Selecting any point u in the plane of three given points a, b, c,

so that «a+ 6;8+ cy
ou = v= -J^—f~

a + 6+ c

where «, 6, c are constant scalars ; the vector to any variable point in the
plane may be represented by

xaa.+ iihR+ zcy
op= p= =^^—

~

^,
xa-\-yo-{-zG

Xj y and z being the anharmonic coordinates of the point p.

(a) If x'^-\-y'^-^z^— 2yz-'ilzx-2xy= 0, the locus of p is a conic touching the

sides of the triangle abc in points which connect through u to the opposite

vertices.

(6) If yz-\-zx-\-xy= 0, the locus of p is a conic circumscribing abc, and the
tangents at the vertices intersect the opposite sides in points on the polar of

u with respect to the triangle abc, or with respect to either conic.

(c) The two conies have double contact, the polar of u being the chord of

contact, and the anharmonic coordinates of the points of contact being

1, (u, 0)2 and 1, w^, w where w is an algebraic imaginary cube root of unity.

{d) Given three scalars, u, v and w, discuss the arrangement of the six

points whose anharmonic coordinates are equal to these scalars taken in

different orders. Show that the six points lie on a conic. Examine the

three cases in which permutation of the scalars determines less than six

points.



CHAPTER VI.

THE SPHEKE.

Art. 41. The equation

TEP= T(/,-e) = a, or p^-2Sp€-he^+ a^= (i.)

requires the variable point P to remain at a constant distance a
from a fixed point E, and consequently represents a sphere of
radius a and of centre E.

The right line p= ^+ ta meets the sphere in the points deter-

mined by the values of t which satisfy

T(^-e+ ta) = a, or T(/3-ey-a^'-2tS{/3-€)a+ t^Ta^= 0; (ll.)

and the product of the intercepts between the point B and the
sphere is independent of a, being

t^t,Ta^= T(fi-ey-a^ (ill.)

while the sum of the intercepts is

(^i +gTa= 2S(/3-6)Ua, (iv.)

if t^ and i^g are the roots of the quadratic (ii.).

The square of the chord cut oiF by the sphere is

(t,-t^fTa^ = U^-4^TY(^-6)JJa^ (v.)

remembering that (8X^)2+ T(YXm)'= TX2^2 (Art. 17), and accord-
ingly the line meets the sphere in real points, only if

TV(^-e)Ua<a, (VI.)

that is, if the perpendicular from the point E on the line is less

or equal to the radius of the sphere. For contact,

TV(/3-6)a = aTa; and TV(^-e)(p-^)= aT(p-/3)...(viL)

represents the tangent cone from the point B, BP being a tangent
line. Since TVX/x<TXTyLt, the cone is real only when T(/5— e)>a.
The locus of the centres of the chords is derived from (iv.) by

putting J (t^ -\-t^a = p— P, and is given by

^j4='' ^"'"-^

J.Q. D
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which represents a sphere on BE as diameter. For it expresses

that the projection of BE on BP is equal to BP, so that the angle

BPE is right.

Taking the harmonic mean of the vector intercepts tohe p— ^,
we have by (iii.) and (iv.), j

Q+
J,)^

=^' '^^ S(p-e)(/3-e)+ «^= (IX.)

is the locus of its extremity—the polar plane of the point B.

Art. 42. Any two spheres,

p^-2Sap+ l = 0, p2_2S/5yQ+m = 0, (l.)

intersect in the plane,

2S(a-p)p = l-m: (ii.)

and if P is any point on the second sphere and P' any point in

this radical plane, the power of the first point P with respect to

the first sphere is (Art. 41 (m.)),
i

Tp^+ 2Sap-l = 2S(a-l3)p-l-]-m = 2S(a-P)(p-p),...(Uhy

or twice the projection of PP' on the line of centres into the
^

distance between the centres.

The spheres cut at an angle determined by .

^_ l-\-m-2SaP
^- ~V{(T«'+0W2+ m)}'

^^^'^

since if a and b are their radii, a^-\-h^— 2ab cos = T(a — /3y.

For further investigation, the origin should be taken at the

intersection of the line of centres with the radical plane.

A variable sphere cuts two given spheres at constant angles,

prove that it cuts an infinite number of spheres at constant

amgles. Let the sphere (i.), determined by /3 and m, be the variable

sphere, and let it cut the spheres {a, I) and (a', V) at the angles Q
and 0\ Assume that it cuts the sphere {a, I") at the angle 0'\

Then the third of the equations, i

Z4-m-2Sa/3= 2a6cos0; r+m-2Sai8 = 2a'6cos0';

I"+m- 2Sa''^ = 2a"b cos &'

,

analogous to (iv.), must be equivalent to a linear combination of

the other two. Multiply by scalars, x, y and z', add and
separately equate to zero the coefiicients of the variables, m, /9

and b, and

xl+yl'+ zl" = 0) x+ y+ z = 0; xa-\-ya+za =0;

xa cos + ya' cos 0' H- xa" cos 0'' = 0.
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The first, second and third show that the sought sphere

(a\ V) must be coaxial with the given spheres, and we have, in

fact, on eHmination of x, y and z,

a"(^-zo+a(r-r)+aXr-o=o,
a'cos e'\l- V)+ a cos e{V-n+ a'cos e\i"-0 = 0.

Substituting for a" its value, ^(^a"^-\-l"), the equation

cos e"J{T[a{V-n+ aXr- IW+ l'Xl- IJ}^

+ a cos e(V- r)+ a'COS e\V'-0=
becomes a quadratic, which gives two values of V for each value

of cos Q". One sphere only is cut at right angles because the

condition becomes linear in I",

Ex. Reduce the equations of a pair of spheres to the form,

p2-2?^Stt/)+ ^=0; p2_2^;Sa/o+ ^= 0, where Ta= l*

{a) Prove that all spheres of the family obtained by giving various
values to 7^ in p2 _ 2^^Sa/>+ ^=
intersect in a common circle.

{b) Examine the condition for the reality of the circle, and show that
whether real or imaginary, it lies in a real plane.

(c) If the circle is imaginary, there are two real point spheres of the
family. Find them.

{d) The spheres of the doubly infinite family

p^-2S(3p-l= 0, S^a=0,

formed by giving all possible values to the vector /3, cut the spheres of the
family (a) at right angles.

Art. 43. Given any three spheres,

p^-2Sap-hl = 0, p^-2S/3p+m= 0, p^^2Syp+n= 0;...(l.)

the radical planes of each pair intersect in the line,

2Sap-l = 2S/3p-m = 2Syp-n; (ii.)

ov p = i (lY/3y+mVya+nVa^XSa/Sy) " ^+ tY{py+ ya+ a^). (ill.)

If the origin is taken on this line, l =m= n; and if it is taken
where the line intersects the plane of centres ABC, the equations

of the spheres may be reduced to the type,

p2-2SAC/)+ ^ = 0, Sku= 0, (IV.)

the vector v being fixed, but k being susceptible of various values.

The spheres of this family (iv.) of given radius (a) have their

centres on a fixed circle,

It is ^asy to verify that the radical axes of every three out of

four given spheres intersect in a point. This point is the radical
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centre of the four spheres, and is situated at the extremity of the

^~2^SaV(/5y+y^+W
the fourth sphere being p^— 2SSp+p = 0.

It may be verified that if in this equation p and 8 are rendered
arbitrarily variable, we fall back on the radical axis of three spheres. If,

in addition, y and n are arbitrary, the same equation represents the radical

plane of two. For example, we may put 8=xa+^f^+ zy, where x, y and z

are arbitrary.

Ex. 1. Find the locus of the centre of a sphere cutting three spheres

orthogonally.

[Let 8 and jo determine the sphere whose centre is sought, and let the
three spheres belong to the family (iv.). The condition ^+jo - 2SSk=
must be satisfied by three values of the vector k. Hence p= ~l, 8 ||

v, and
the locus is the radical axis.]

Ex. 2. Find a sphere cutting four spheres orthogonally.

Ex. 3. If four spheres are mutually orthogonal, their centres determine
a tetrahedron self-conjugate to a sphere.

[Let the spheres be referred to their radical centre. The conditions are
^= Sa^= Say= Sa8= S/?y= S/3S= Sy8, and the centres are conjugate in pairs

to the sphere p^= l.]

The Method of Inversion.

Art. 44. We have seen that

represents a vector having its tensor reciprocal and its direction

opposite to the tensor and the direction of the vector p (Art. 16). .

Hence more generally if

CT'= p'-y= - R%p^y)-'= - RK CV-\ (I.)

P and P' are inverse points with respect to the sphere, centre C
and radius R, for

UCP'= UCP, TCP'TCP= i22

The inverse of the sphere T(yo— a)= a is

T(y-„- R^ \ n./ NO ^-02Q« — y , __^^a, or T(a-yf-2R^S
p.yj -> - -V- // —^_^'T(p-y)2 -'

The symbol T prefixed to the scalar on the right is intended to
\

show that it is to be taken positively. Thus, to invert the given
sphere into a sphere of radius b, we have

aR^
h— + rn/ _—.2_ 2

^ccording as T(a— y)> or <a, ....(ill.) .
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or according as the centre of inversion lies outside or inside the

given sphere.

The inverse of a plane is a sphere through the centre of inver-

sion, and the inverse of a line is a circle. Thus

y ^=a + ^^, or v(-^+ a-y)/3 = 0, (IV.)
p-y '^ \p-y T

represents a circle through the point C—the inverse of the line

Ex. 1. If any two vectors oa, ob have oa', ob' for their reciprocals,

then the right line a'b' is parallel to the tangent od at the origin o, to the
circle gab ; and the two triangles, dab, ob'a', are inversely similar.

{Elements of (Quaternions^ Art. 259.)

Ex. 2. Invert the sphere, centre a and radius a, into the sphere centre
B and radius h.

rxx o (a -7)7^2 aB?
[Here ^-y +T(a-y)2-a2 ' T(a-y)2-a^

^ -^^>

and from these

7=^1^. and ^=^-|^(T(a-^)-(±6-an

There are two real positions for the centre, but there may be only one
positive value of H?.'\

Ex. 3. Invert a system of coaxial spheres into concentric spheres.

[A system of coaxial spheres p^ — '2,w'^ap+ l=Q inverts into a system of

spheres having their centres on the line locus,

^ f Y^-22vSya+ r

If this is independent of ?^, it is easy to see that y'^ — l= 0, y||a, or

y=±as/—l.
The centre of the inverted spheres is ±a\^ — It ^aR^ :>/ -I.

Ex.4. Prove that ^g ^(3 zy

p= i- 4

represents a sphere through the four points a, b, c and d.

[Invert with respect to the point d.]

Art. 45. The following examples relating to a sphere and a tetrahedron
are easily solved by the formulae x. or xii. of Art. 38, or by the method of

Art. 39.

Ex. 1. Determine the sphere through a, b, c and d.

[The vector k to the centre is k= —\v~^^\(^= —\Yi\.~^d?^ and the
squared radius is i?2= - v-^S^a^- ^^"^(^Xa^)^.]

Ex. 2. Given four spheres having their centres at a, b, c and d, and
their radii equal to a, 6, c, o?, find their radical centre.

[If w ^s the vector to the radical centre, and if A= (w — a)^+ a^, we have

co= -|v-i2X(a2+ a2), A= v-^2^(a2+ a2)+i^-2(2A.(a2+ a2))2.]
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Ex. 3. Describe a sphere to cut four spheres orthogonally.

Ex. 4. Describe a sphere to cut four given spheres at given angles.

[Here there are four equations of the form (K-af+ a^- 2aR cos 6+ R^= 0.

Multiplying by the scalars I and the vectors A and forming the sums, the

equations,

v{K^+ R^)+ ^l{a^+ a^)-2Ri:iacose=0; 2KV + ^X{a^+ a'^)-2R'2XacosO=0,

are obtained. Substitution for k in the first gives a quadratic in R. For

the origin at the radical centre, the equations are,

Rm'ZXa cos Oy+ v^-2Rvi:iacoiiO + hv^=0 ; Kv= R^Xaco&e.]

Ex. 5. To invert four spheres into four others of given radii.

[If a', b', c\d' are the radii which the inverted spheres are required to

have, and if the vector i terminates at the centre of inversion,

t2 - 2Sta ^o?^d^±-,R^= ^. ( Ex. 2 of last Article.)

Taking the origin at the radical centre,

^ ' a ' a

These lead to a quadratic in R^ for each set of signs.]

Ex. 6. Find the equation of a sphere touching the four faces of a

tetrahedron.

[0= y+r2±TA; = 'y/<+ r2±aTA.]

Ex. 7. Find the condition that five points a, b, c, d, e should lie on a

sphere.

[In the notation of Art. 39, p. 43, this is aa^+ ^/^^+ cy^+ ^S^+ ee^= 0, or

oa2(bcde) - ob2(acde)+ oc2(abde) - od2(abce) + oe2(abcd)= 0.]

Ex. 8. If five spheres are orthogonal to a sphere, prove that

Pa(bcde) - Pb (acde)+ Pc (abde) - p^ (abce)+ Pg (abcd)= 0,

where a, b, c, d, e are centres of the spheres and where p^, Pb, Pc, Pdj and Pb

are the powers of any point with respect to the five spheres.

Ex. 9. If five spheres cut a sixth at the angles ^, Q\ etc., prove that the

radius {K) of the sixth is given by the relation

2pa (bcde)= '2,R^a cos ^(bcde).

Pa being defined as in the last Example, and a, &, c, c?, e being the radii of

the five spheres.

Ex. 10. Find the equation of a sphere in anharmonic coordinates.

[Compare Art. 40, p. 43. The imaginary cone standing on the circle at

infinity is

T/)2= 0, or i2= STa2aV-22Sa/5a6A7/ = 0,

and a sphere is 12+ '^ax2lx =0.]

Ex. 11. Prove that the equation of the sphere circumscribing the

tetrahedron abcd is in anharmonic coordinates,

2T(a-/5)2a6.r3/= 0.
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Art. 46. The product of the successive vector sides of a poly-

gon of odd order inscribed in a sphere is a tangential vector at

the initial point of the polygon ; and if the number of sides is

even, the product is a quaternion whose vector part is parallel to

the vector radius to the initial point
The centre of the sphere being O, and A^, A^ being successive

vertices, the isosceles j-triangle A^Afi is inversely similar to

AjAgO, and therefore (Art. 18, p. 14),

Thus, if OAj — a^, OA2 = a2, etc., A^A2 = yi, A2A3= y2, etc.,

«2= - yi«iyi " ^ «3= - y-i^ij-i
" ^ = + r2yi«iyi "V2 " ^ ^^c.

;

and generally, the polygon being closed so that a^+i = ai,

«l = (-)''2«l9'"^ where q = ynyn-i -" y^yi (i-)

For an odd number of sides,

gai+ aig= 0, or aiSg+ SaiVg= 0, or Sg = 0, Vg±ai; ...(ii.)

and for an even number,

qa^ — a^q = 0, orY .a^q = 0, or Yq\\a^ (ill.)

In the first case {n odd), the product is a vector, and is perpen-
dicular to ttp or parallel to a tangent at A^. In the second case

{n even), the product is a quaternion having its vector part
parallel to a^

In connection with this article and its examples. Art. 296 of

the Elements of Quaternions should be consulted.

Ex. 1. The equation of the sphere through four given points a, b, c, d
may be written in the form

S(p-a)(a-/3K/?-r)(7-S)(S-p)= 0. .

Ex. 2. The normal at the point p on this sphere is parallel to

V(p-a)(a-^)(/i-y)(y-p);

and the vector CT being variable,

S(^-p)(p-a)(a^/?)(/5-y)(y-p) =
is the equation of the tangent plane at p.

Ex. 3. The equation of the circle abc is

V(p-a)(a-/?)(^-y)(y-p)= 0,

and the tangent to the circle at the point p is

V(C7-p)(p-a)(a-/:?)(^-p)= 0.

[The vector part of a product of an even number of coplanar vectors is

perpen4icular to their plane, being a product of half the number of coplanar
quaternions. Therefore when the points are coplanar the expression for the
normal vector in Ex. 2 must vanish, as this vector cannot be perpendicular
to the plane. The equation is also susceptible of geometrical interpretation.]
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Ex. 4. The product of four successive vector sides of a quadrilateral

inscribed to a circle is a positive or negative scalar according as the quadrir

lateral is crossed or uncrossed.

[Use the relation U .
^—= ± U— , which asserts that the angles abc, adc
BC DC

are equal or supplementary.]

Ex. 5. The " anharmonic function of four points in space " being defined

by the equation

, . AB CD
(abcd) =— •

,^ ^ BC DA

examine the nature of this quaternion when the four points are coneyclic.

Ex. 6. Prove that the anharmonic functions of any four points in space

satisfy the relations

(abcd) + (acbd)= 1 , (abcd) . (
adcb)= 1

;

and that (abcd)=K -r-7j
C B

where b', c' and d' are the inverse points of b, c and d with respect to the

point A.

[Note that a-^ - ^"^= a-^ . (/5 - a) y8-\]

Ex. 7. If (oABc)=— 1, prove that ob-^ = ^(oa"^+ oc-^).

Ex. 8. Inscribe a polygon to a sphere, given the directions of the sides

of the polygon.

[Here J5q is given, q denoting the quaternion in the text ; and (ii.) and
(ill.) show that the vector to the first corner is _L VU^', or else

||
± VIJ^'.]

Ex. 9. For the gauche quadrilateral oabc, which may always be con-

ceived to be inscribed in a determined sphere, we may say that the angle

of the quaternion product, L (oa . ab . bc . co), is equal to the angle of the

lunule, bounded by the two arcs of small circles cab, ocb ; with the same
construction for the angle of the anharmonic L (oabc), or L (oa : ab . bc : co).

{Elements, Art. 296 (15).)

Ex. 10. Let ABCD be any four points in a plane or in space, connected by
four circles, each passing through three of the points ; then, not only is the

angle at a, between the arcs abc, adc, equal to the angle at c, between cda
and CBA, but also it is equal to the angle at b, between the two other arcs

BCD and BAD, and to the angle at d, between the arcs dab, dcb. {Elements,

Art. 296 (18).)

Ex. 11. The vector part of the product of four successive sides of a

gauche quadrilateral inscribed in a sphere is equal to the diameter drawn
to the initial point of the polygon, multiplied by the sextuple volume of the

pyramid, which its four points determine. {Elements, Art. 296 (43).)

'Art. 47. To inscribe a polygon in a sphere so that its sides

may pass through given points.

Let the unit of length be selected equal to the radius of the

sphere. Let the centre be taken as origin, and let p, p^, p^, ...

Pn{ = p) be the vectors to the vertices, while /3p fi^y ••• ^n are the
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vectors to the fixed points. The rectangle under the segments of

the chords through ^^ is

(/>-A)(pi-/3i)=i+A^; (I-)

so that ft= -§^= -^^' if Pi= fiv 9x= l ("•)

Again,

P2~ Pi V2~ H2P

and it is easy to see that, in general,

Pm— ^mp ["'V^')
^m^^ Pm^m-i'T\ ) Pm-vj

Finally, P ={-Yfzfp ^^ Pn= P- Pn^P. ?»= ? (v.)

Two cases now arise according as n is odd or even. In the

first place, if n is odd, remembering that p^= — 1,

pp-\-pp = pqp-q = p(qp+ pq); or pSp+ Spp = p{pSq+8pq);

or, separating the scalar and the vector parts,

Spp+ Sq = and Spq-Sp = (vi.)

Introducing the imaginary of algebra, these may be combined
into the single relation,

S(p+ s/^l)(q+ J-lp) = (VII.)

The equations (vi.) give a line locus for p which intersects the
sphere in two points—real or imaginary—which satisfy the
conditions.

In the second place, if n is even,

pp-pp= pqp-\-q= p(qp-pq); or V
.
pVp= pV . Vgp.

Adding to each side x— Spj^, we have

YpYq+Yp — p-^x=—xp; and this gives SYpYq = — xSpYq
on operating by SYq. Hence,

p(Yq+x)= -Yp-x-'^SYpYq,

as we see by adding SpYq to each side. Thus,

as appears on taking the tensor, remembering that Tp^= l. This
quadratic in x^ has one negative root. The other root is positive,

and tliere are thus two real values for x, and two real points
satisfying the conditions.
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We have now to determine jp and q. Multiply jpm in equation

(iv.) hy s/—\ and add it to q^, and

= (/3^+(-W^)(g,n-i+ x/-li)m-i).

This gives at once, on referring to (ii.),

...(/3,+(-)V-l)(ft-x/-l)v/-l J""^

and the real and imaginary parts of this product are q and _p.

A quaternion of the form g+ -v/ — 1 . p is called by Hamilton a
bi-quaternion. (Compare Art. 22, p. 20.)

Ex. Show that in the notation of this article

[Multiply q + sj — Ip into K.q +J — lKjp and separate the real and the
imaginary parts.]

EXAMPLES TO CHAPTER VI.

Ex. 1. The sphere which has its centre at the origin, and has the vector

OA, or a, with a length Ta= a, for one of its radii, may be represented by
any one of the following equations :

p a p+ a p + a p + a \ a a/

T{p-ca)= T{cp-a),

which are transformations one of the other, and each of which exhibits some
geometrical property of the surface.

Ex. 2. The circle which has its centre at the origin, which lies in the

plane Sap= 0, and which has Ta for its radius, is represented by the equation

a/

Ex. 3. If ^ is a variable parameter, in absolute magnitude not greater

than unity, the equations

s^=^, fv^y=^2-i,
a \ a/

represent a system of circles which generate a sphere.

Ex. 4. The equation of the sphere through the four points o, a, b, c may
be written in the forms

S (OA . AB . BC . cp . po)= ;

a^SfSyp+ fS^Syap + y^SafSp= p^Sa/Sy
;

SC/3-1 - a-i)(7-i - a-i)(/)-i - a-i)= 0.

Ex. 5. If we project the variable point p of a sphere into points a\ b\ c^

on the three given chords oa, ob, oc by three planes through that point p

parallel to the planes boc, coa, aob, we shall have the equation

Op2= OA . OA^ + OB . ob' + oc .
00"

I
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Ex. 6. The expression*

p= r]<^j*kj~^k~* or p= r]i^j^k'^~^,

in which r is a given scalar, ^, j^ k mutually rectangular unit vectors, while

s and t are parameters, represents a sphere concentric with the origin.

The expression may also be put under the form

and it may be expanded as follows :

p=r{{i cos tir +j sin tir) sin stt+ ^ cos stt }.

(a) Show how to establish the first form of the expression by the

properties of conical rotations.

Ex. 7. Show that the equation

,2fw+p- ay

in which w is a real scalar capable of receiving any value consistent with the

reality of the vector /a, represents the portion of the plane S(/) — a)y8=0
included within the sphere T.{p — a)= Tfi.

Ex. 8. The equation t T (w+ /a)= 1

,

in which /a is a real variable vector and w a real variable scalar, represents

the region enclosed by the sphere T/) = l.

Ex. 9. A sphere passes through the intersection of the planes SAp=0,
Sfxp= 0, Sv/t)= 0, which cut off caps the sum of whose areas is equal to ^Tra^.

Show that the locus of the centre is represented by

3T/32+ T/o . S(UA+ U/x+ Uv)/D= a2.

Ex. 10. The centre of a sphere of constant radius a describes a circle of

radius b concentric with the origin and in the plane Sa/o= 0, Ta=l. The
equation of the surface generated may be written

T(±bV.a-'Yap-p) = a',

or
.

2bTYap= ± (ly+ U^ - a?)
;

or 462(Sa/3)2= 462T/32_(T/32+ 52_a2^2.

or 4a2T/)2 - 462(Sa/o)2= (T/32 -b'^+ a^f

;

g^ /)-a(a2 -62)1^^5.
P+ a(a^-b^)i a

or p= ±bJJ . a~^VaT +aUT (r a variable vector).

(a) Taking f3 and y, two auxiliary unit-vectors perpendicular to one
another and to a, show that

a^Tp2 _ h^(SapY = a2(Syp)2+ Sp(a/?+ «VP^^) Sp(a/3 - a JW^^),
and prove that each of the planes

Sp(al3±as/b^'a^)=0

touches the surface in two points and cuts it in a pair of circles.

^ExsCmples 1-6 are taken from Hamilton's Elements of Quaternions.

t This and the last example are to be found in Hamilton's Lectures on
Quaternions, Art. 679.
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Ex. 11. If p and q are variable quaternions, while a and /8 are given
vectors, show that

OY=p=-pap-^+ qfiq-^

represents the shell included between the spheres

T/o=Ta+ T/?, T/)--=T(Ta-T/?).

(a) If y is a third given vector, and if a and h are given scalars, the
point p terminates on the circle of intersection of the spheres

T(ap-y)=T(a-6)A T(6/)-y)= T(a-6)a, "

when the quaternions p and q are connected by the relation

apap~^ + hqfBq~^= y.

ih) When the relation

Vy {apap-'^ + bq/Sq-^)=

connects p and q, the locus of p is the surface

4(Spyf{abTp^+ (a - 6)(aTa2 - ^T^^)}= Ty2{ {a+ b)Tp^+ {a- b){Ta^ - T^2) p.

(c) If the condition

Sy (apap-^ + bq/Sq-^)=

is satisfied, the point p must render the expression

4(S/)y)2{a6T/o2+ (a-&)(aTa2-6T/52)}

+ {a- 6)2Ty 2 (T/)^+ Ta*+ T/?* - 2Ta2/52 _ 2T/3^p^ - 2Tp^a^),

less than zero.

Ex. 12. The bars ab, bc and cd are connected by universal joints at

B and c, and also to two fixed points a and d. If p is a point fixed in bc,

and if we write

p= AP=AB+ ?*BC, p'= FT)= tl'BC + CT), U+ ^l'=l,

where u is a given scalar, and also

AB=pap~^, BC=q/3q~^, CD = ryr-^, da= 8,

where a, /?, y, 8 are given vectors and p, q and r variable quaternions,

prove that

r, .1 P'u\p^+ u^(3^ - a2) - pu{p'^+ u'^fS'^ -y^)+ t

^^^ - 2mc'Ypp'
'

t being a scalar, and hence show that the inequality

f^— ^Tuu'Ypp'

determines the region within which the point p must lie.

(a) If the bar bc remains parallel to the fixed vector ^, the locus of p is

the intersection of the spheres

(^p-u^y= a\ {p'-u(Sf= y\

{b) In this case the locus of the bar bc is the cylinder

(c) When the quadrilateral abcd is coplanar and when the motion is

confined to the plane abcd, find equations of the form
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for the path of any point of a plane lamina attached to bc, t being a constant
unit-vector perpendicular to the plane abcd, and /(^, y) being a scalar
function of x and y.

Ex. 13. Solve the equation

-J-+ J: \ I_=0
p-a /)-/? p-y p-8

(a) If /)', a', f3'
and y' are the vectors from the point d, the extremity of

the vector 8, to the inverses of the extremities of p, a, /? and y with respect
tOD, 111

rp-a p- 15 p-y
Hence deduce the relations

p'-li_ y'-l3!_p'-YJY-p!\^
p'-a! p'-y' y'-a! \y'-a'J

(b) Solve similarly the quaternion equation

—+—,-- ^=0q-a q—b q-c q-d
by assuming

{q-d){q'-d)= {a-d){a'-d)= {b-d){b'-d)= {c-d){c'-d)= l.

-^ (Eobert Eussell.)



CHAPTER VII.

DIFFERENTIATION.

Art. 48. The equation

OT= p = <p(t), (I.)

in which a variable vector p is given as a function of a variable

scalar t, represents a curve in space, it being possible in general

to pass from one point P to another point P" on the locus, only in

one definite way—namely, through the series of points deter-

mined by the variation of the parameter from t to t\

The chord PP' of the curve is

PP'=/-p = 0(O-0(O> (n.)

and for the sake of argument we shall suppose that the para-

meter t represents the time, so that P is the position of a moving
point at the time t, and P' its position at the time t\

Fig. 23.

Writing PQ'=^^=M*1^), („,)

it is apparent that had the point passed from P to V, in the time
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t'— t, not along the curve and with varying velocity, but along

the chord and with uniform velocity, and that had it continued

to move uniformly along the production of the chord, it would
have reached the point Q' in unit time. In a similar manner the

point Q" would have been reached in unit time had the point

moved uniformly along the chord PP"' in the time in which it had
described the curve and had its motion been continued along the

chord without alteration. In the limit PQ represents rigorously

the velocity at the point P, in magnitude and direction, for Q is

the position the point would have reached in unit time had it

left the curve at the point P, preserving unchanged the velocity

it actually possessed at that point. The equations

t' = t * ~t h=0 1^

= lim«(,!,(«+ i)-^(0
.(IV.)

are equivalent modes of expressing the limit to which we
advance ; the third being perhaps in closest agreement with the
illustration. It is usual to write

PQ = dMi) = ^'(0 (V.)

as an abbreviation for the limit.

The vector (f){t) is the derivative, the derived or the differential

coefficient of the vector function ^(i) of the scalar t, and the

differential of (f>{t) corrcvsponding to any scalar differential

d^ of t is

d.0(O= lim7i,L(^+-)-0(O) = ^XO-d^. -. (VI.)
7i=a3 \ \ n/ /

This is a vector tangential to the curve and of length propor-
tional to the differential d^ which may be large or small.

If t is the arc of the curve, the vector (l>\t) is of unit length,

for in this case we may consider t to represent the time for unit
and uniform velocity along the curve.

If 0X0 = ^' ^^® extremity of the vector OP= ^ {t) is a cusp or
stationary point.

Ex. 1. The curve /o = acos^+ ^sin^

represents an ellipse of which a and /5 are conjugate radii.

[The vector p'= ^=-a&mt-\-fico8t= aco^i^+ tj + fi&m{^-\-tj is the

radius conjugate to p.] ^

Ex. 2. The parallelogram determined by conjugate radii of an ellipse is

constant ki area.

• [Vpp'= Va/5.]
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Ex. 3. How is the point at the extremity of the vector

cos^(t+ t') n sin ^(t+ t')

related to the points t and t' on the ellipse ?

Ex. 4. The curve p= at'^+ 2^t+ y is the trajectory of a point moving
with uniform acceleration.

Ex. 5. What is the curve

Investigate its properties.

Ex. 6. A helix is represented b}^

/o = a cos t+ f3 sin t+ y^,

the vectors a, /3 and y being mutually rectangular, and the tensors of

a and /3 being equal. Determine all particulars.

Ex. 7. A conic is represented by the equation

at'^-h2(3t+ y
^ at^+ 2bt+c'

Its centre is at the extremity of the vector

_ ac — 2/36+ yg""
2{ac-b^) '

[The curve meets an arbitrary plane in two points. Find the pole of a
chord, and in particular of the chord at infinity.]

Ex. 8. The equation YpaYfSp= (Vaf3y

represents a plane curve—a hyperbola of which a and f3 are the asymptotes.

Ex. 9. Write the equation of the conic of Ex. 7 in a vector form'
independent of the parameter,

Akt. 49. A vector function of two parameters, t and u,

P=^<p(t,u), (I.)

represents a surface. It may be regarded as generated by the

family of curves u = constant, t variable) or by the family

t = const

In strict analogy with Art. 48, (vi.) we have

dp= d<p(t, u) = lim mn\ ^UH— d^, u+-du) — (p{t, u)

= lim T—[(f)(t-\-hdt, u+gdu)— d)(t, u)]
h=o, g=o i^g

where d^ and du are any scalars. It is evident that this expres-

sion is linear with respect to dt and di6, so that we may write

dp= d^(^,u) = 0\d^+ 0,.du =^.d^+^.d^ (III.).
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The derived vectors cftXt, u) and 0/^, u) are tangential respec-

tively to the curves u= const, and t= const, at the point t, u ; and
more generally the vector <p'dt+ <l),du is tangential to the

surface.

The equation of the tangent plane to the surface is

S(p-<p)<p'<l>=0, or S(p-</>)v=^0, if v\\Y(f>'<t>,, (IV.)

and the vector p is normal to the surface. The equation of the

normal is

V(yo-0)V^>, = O, or Y(p-f/>)v= 0, or p= ^-^xv (v.)

Ex. 1. If <^(^) is a function of a single parameter, the equation

p= cf>(t)-\-u<f>'(t)

represents a developable surface.

[This surface is generated by the tangent lines to the curve p—<f)(t).

The normal vector is Y(cf>'+ uj)").<i>' or Y<f)"(f>', and is independent of u.

The tangent plane is S(p-(f>-u<^')Y<f>'(f>"=0, or 8{p-cf))(f>'(f>"=0, and as this

is independent of ii, it touches the surface all along the generator determined
by t Conceive the tangent plane to roll over the surface and the successive

generators to become attached to it, the surface will be unfolded or developed
in the moving plane.]

Ex. 2« The equation

in which a is a constant vector, represents a cylinder standing on the curve

p= (fi(t) and having its generators parallel to a. The equation

p= ic<f>{t)+ a

represents a cone standing on the same curve and having its vertex at the
extremity of a.

Ex. 3. Find the locus of a line joining corresponding points on two
homographically divided lines ab and cd.

[The surface is p^^^±i^t±^ if p=<^, pJ.l±^ are the
l + t+s{l+ t7ii) ^ 1 + ^ l-\-tm

homographically divided lines. This is a hyperboloid of one sheet.]

Ex. 4. Show that the variable line determines homographic divisions on
the lines ac and bd.

Ex. 5. Find the scalar equation of the locus of Example 3, and show
that it may be reduced to the form

xr=zw,
where X, Y, Z and W are planes.

Ex. 6. Find the locus of a line similarly dividing two given lines ab
and CD.

Art. 50. The equation
^'^

9-=-^{t,n,v\ (I.)

in which t, u and v are variable parameters, may at pleasure be
J.Q. E
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regarded as determining (i.) a singly infinite family of surfaces,

for example, the surfaces found by assigning various but constant

values to v
;

(ii.) a doubly infinite family of curves, for example,

t variable, u and v constant
;

(ill.) any point in space, for we can
in general find one or more sets of values of t, u, v corresponding

to an arbitrary vector p. The scalars t, u, v are curvilinear

coordinates of the extremity of the vector p.

Differential of a quaternion function.

Art. 51. The differential of a quaternion function of a
quaternion is defined by the equation

d.F(q)= limjl{F(q+ '^)-Fq]^f(dq), (l.)

or d.F{q) = lim l{F(q+hdq)-Fq}=f(dq).

a definition in complete agreement with the results of Art. 48.

The function f(dq) is a linear and distributive function of
the differential dg, while it also in general involves the quaternion

q in its constitution. To prove this proposition, observe that if

r and s are any two quaternions,

f{r+s)^\imn[F{q+ ''-^)-Fq]

or simply f{r+s)=f{r)+f{s) (ll.)

As a corollary, f(xr) = xf{r), (lil.>

if X is any scalar.

As an example,

d.,^=lim^4(,+J)-,^} =lim^4,H,.5-.J,+(-t^,^}

and thus d.q'^ = q.dq-\'dq .q .(iv.)
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There is a notable difference between the differential of a

function of a single scalar and a function of a quaternion, which
is clearly illustrated by this example. In general, from a differ-

ential of a function of a single scalar d . F{x), we can form a

differential coefficient , , which is absolutely independent of

d X- d a^
daj. Thus, -A—= ^x, but —T^ = g'H-dg .q.dq-'^ is not indepen-

dent of dg. And this, which is a consequence of the non-

commutative law of multiplication, is really quite in keeping

with the ordinary theory, for if F{x, y) is a function of two
independent scalars x and y, we cannot form a complete

differential coefficient from d . F(xy) =—dx-\-—dy, where dx

and dy are arbitrary, though we can of course form the partial

differential coefficients 7^ and ;r—. We must remember that a
Zx ^y

quaternion is a function of four numbers, and that a differential

dq is susceptible of a quadruply infinite system of values.

As a second example,

d.q-^^—q-'^ .dq.q-^, (v.)

for d.q-'^ — \\mn\(q-\—dq) — g"^[

Ex. 1. Prove that

d.S^= Sd^, dV^=Vd^, dK^=Kd^. U
[Note that these symbols are distributive, or that

S(2'+%-idg')=Sg'+w-iSd5'.]

Ex. 2. If V is a vector function of a variable vector p, and if dv= <^p £v

show that <j!)d/3 is a linear and distributive vector function of d^, so that for ^
any pair of vectors ^(a + /?)= <^(a)+ <^(i8).

[This is a particular case of (11.). Fuller details will be found in the
following chapter.]

Art. 52. The differential of a function F{q, r, s, ...) of any
number of quaternions is the sum of the differentials with
respeet to each separately, or

d . F{q, r, s, ..,)= dq . F(q, r, s,...)+ dr . F(q, r, 8, ...)-|-etc., ...(l.)

C\
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where d^ . F{q, r, s, ,..) denotes the differential of the function on
the supposition that q alone is variable. We may write

d.F(q,r,s,..,)

=
^iTH^(^"^^^^'

^+^^"' .+^d.s,...)-^(g,r,s,...)},(n.)

and this, by the process of the last article, leads at once to (i.).

Thus,

d . gr= dg . r+ g . dr,

d .qq~^ = = dq. g~^4-g.d.g~\ d .
q-^= —q~^

. dq .
q~^.

Generally in any product of variable quaternions, the rule is to

differentiate each quaternion in the position it occupies.

Ex. 1. Differentiate r=aqbqc, where q is variable.

Ex. 2. Differentiate {qry and g-V, where q and r are both variable.

Art. 53. The differentials of the functions Sg, Vg, Kg, Ug,
Tg, UVg, etc., of a quaternion are naturally of importance. We
have already stated that

dSg = Sdg, dVg = Vdg, dKg = Kdg, (i.)

and these results are immediate consequences of the distributive

character of the symbols, S, V, K.

Since (Art. 17, p. 12)
Tg2 = gKg, we have . 2Tg . dTg = dg . Kg+ g . Kdg = 2SdgKg

(compare Ex. 6, Art. 20, p. 15), and since Kg = Tg(Ug)-^ the
differential of Tg is

'^'^^=s^- - '^^=«f
("•)

Further, since

g = Tg.Ug, and dg = dTg . Ug+ Tg . dUg,

we have on division by g,

dg^dTg dUg
g Tg^Ug' ^"^'^

and therefore by (ii.), -.=y^= V.-2 (iv.)

In particular for vectors,

dTp2 = - d . p2=_ 2Spdp = 2Tp2Sp -Mp
and dp= Tp . dUp+ Up . dTp, and therefore,

dTp^gdp ^^ydp
Ip p Up p
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The relations S^ = 0, S^= (vi.)

are worthy of notice.

Ex. 1. Eesolve dp into components along and perpendicular to p.

2u

Ex. 2. If p=ra'' (3, where Ta=T^=l, Sa/5=0, and where the scalars
r and u alone vary, show that

V^=ad.^ S^=^'.
p ' p r

(a) Prove generally that TV . dpp-^ is the differential of the angle swept
out by the varying vector op=/3.

Ex. 3. If p and p' are inverse points, the origin being the centre of

inversion, and if dp and d'p are any two differentials of p, and dp' and d'p'

the corresponding differentials of p', prove that

dp' _, dp
d>'=^ •d'p-^'

and interpret the meaning of this relation.

Ex. 4. Compare an element of vector area with the corresponding
element into which it is changed by inversion.

[The elements are Vdpd'p and R^p-* . p-^Vdpd'p . p.]

Ex. 5. Prove that ^-.

(a)dVyq=V^.Vyq.

(b) dyVq=Y(v^.Vqy

(c) dsu^=s(v^.u^).

(d) dLq=s{^--^y

Ex. 6. The vector a being constant, prove that

d . qaq-^ = 2V . Vd^^-i . qaq-^= 2q(Y . Yq-^dq . a)q~K

Ex. 7. Prove that

da*= d.rAogTa+|Ua) a%

where a is a constant vector and a: a variable scalar ; and that

da-=^.S^.a*+V^.Va^
a a

where .v is constant and a variable.

Art. 54. If P is any scalar function of a variable vector p,

a differential of P is connected with the corresponding differential

of p by a relation of the form

'4 dP=-.SKl/0 (I.)

the vector v being a function of p but independent of dp.
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The rate of variation of P along any direction a (Ta = 1), may-

be written in the form
d.P=-Sm, (II.)

it being understood that the suffix a attached to d signifies that

the corresponding differential of p is

dp = a (III.)

This rate of variation as expressed by (ii.) is the projection of

the vector v along the vector a, and consequently the rate of

variation of P is maximum along the vector v, being then equal

to Tj/, while it is zero along any direction normal to v.

Having given the variations of P along three non-coplanar

directions, or what is equivalent, having given the differentials

dP, d'P and d"P of P corresponding to three non-coplanar
differentials dyo, d'p and d!'p of p, we can determine the vector v.

We have in fact

dP=-S,.d/o, dT=-Si.d>, d''P=-SvdV, (IV.)

and by the fundamental formula of Art. 26, p. 24, we find

Vd>dV .dP+ Vdydp . dT+ Vdyodp . d"P .

"""
Sdyod>d> ^ ^^

Thus it appears that the vector v is derived from P by means
of the differentiating operator

-_ vd>d> . d+vd>dp .
d^+vdpdy .

d--

^~~
sdpd>dv

' ^^^'^

in which dp, d'p and d!'p are any three non-coplanar differentials

of p, and in which d, d' and d'' are the corresponding symbols of

differentiation.

Ex.1. Prove that VSa/)=-a,

VT/o=+U/D,

VTVa/3=+UVa/o.a,
VT(p - a)-i= - U(/> - a) . T(p - a)-2.

[These follow from the relation dP= - SdpyP.]

Ex. 2. Show that

SaV.Tp-i=-Sa/3.T/9-3,

S)8VSaV .
Tp-i= 3SapS/3p . Tp--+ Sa^ . Tp-%

SyVS^SVSaV . Tp-i= - 3 . bSapS^pSyp . Tp-^ - 32S^ySa/) . T/^-^

Art. 55. The form of the expression found in the last article

for VP suggests a new view of the subject which is applicable

in the general case when P is a vector or even a quaternion

function of p. Suppose a parallelepiped constructed having its

edges equal to any three vectors dp, d'p and d"p, and having its
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centre at the extremity of p. If we suppose the vectors arranged
in positive order of rotation (compare Art. 24), Yd'p6!'p is the

outwardly directed vector area of the face having its centre at

the extremity of p-{-hdp ; and — Yd'pd"p is likewise the outwardly
directed area of the face, centre p - ^dp. Also — Sdpd'pd"p is

the volume of the parallelepiped.

Let F(p) be any function of p, scalar, vector or quaternion,

then the sum of the products oi the outwardly directed vector

faces into the value of F(p) at their middle points is

Yd'pd"p.F(p + Jdp) +Vd^d^. F(p+id'p) +Ydpd'p.F(p+ Jd»
- Vd>dV. F(p - \dp) -Yd''pdp.Fip -id'p) - Ydpd'p.F(p- ld"p), (I.)

and the quotient of this sum b}^ the volume of the parallelepiped is

^Yd'pd"p.{{F{p+ idp)-^F(p-^idp)}

^Sdpd'pd"p ^ -^

Each edge being diminished in the ratio - , the quotient becomes

.-^SYd>dv{4+i^dp)^4^^^dp)}
_

--n-''Sdpd'pd"p ^ '^

So that when n increases without limit, or when the parallele-

piped whose edges are -d/o, - d'p, - d"p decreases without limit,
Ifh 'Yh 71/

the limiting value of the quotient (iii.) is (compare Art. 51 (i.))

ZYd>dV..{4-FA^d,)-4^i^dp)}

Sdpd'pd"p

= ^^Yff/:^^^==v.Fp (IV.)
Sdpd'pd"p ^ ^ ^

Thus V .F(p) is the limit of the ratio which the sum of the

products of the outwardly directed faces of a parallelepiped into

the mean values of F(p) over the faces bears to the volume of

the parallelepiped. And the vectors dp, d'p, d"p being arbitrary,

the result is independent of the shape of the parallelepiped.

Take the case in which F(p) is a vector function (<r) of p, and
-consider separately the scalar and the vector parts of V . o*. The
scalar part is the limit of the ratio which the sum of the scalar

products of o- into the outwardly directed elements of the sur-

face—or which the sum of the inwardly directed normal com-
ponents of a- into the corresponding area*—or which the surface

—-3

* Remember that Sa/8 is minvs the length of one vector into the projection of

the other upon it.

— lim
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integral of the inward normal component of cr—bears to the

volume. Thus if a- represents the flux of a fluid, SVo- is the rate

per unit volume at which the amount of the fluid is increasing

at the point in unit time. In other words SVo- is the rate of

increase of the density at the point. If or is the velocity of a

fluid and c the density, ccr is the flux, or the mass of the fluid

that crosses unit area normal to a- in unit time, and SV . {ca) is

'dc
the rate of increase of density at the point, or — . Thus

01/

|= SV(c^) (V.)

For an incompressible fluid, c is constant and SVo- is zero.

In like manner, V . Vo- is the limit of the ratio borne to the

volume by the integral over the surface of the vector product

V.Uj/.o-.d^, where Ui/ is the outwardly directed unit vector

along the normal and d^ the scalar element of area, or where
Uj>d3. is the outwardly directed vector element of area.

Since it has appeared that these results are independent of

the shape of the parallelepiped, it follows that they are true for

any closed surface formed of a single sheet, and we have

iimiM(e)=v.i'(p). (VI.)

where div is an outwardly directed element of vector area of the

surface, and where v is the volume, the limit being arrived at

when the surface becomes indefinitely small.

Art. 56. Towards further elucidation of the operator V, con-

sider the analogous integral taken round the vector sides of a
parallelogram, having its centre at the extremity of the vector p.

Circuiting in the positive direction and forming the product of
the vector sides into the corresponding values of F{p) at their
middle points, the sum is

dp . F(p - JdV)+d> . F{p+ idp)- dpF{p+ id»- d'pFip- idp).

Collecting terms and dividing by the area of the parallelogram,
the result is

dp .{F(p+ jdp)- F(p- jdp)} - dp{F(p

+

|d»- F(p- jd'p }}

TYdpd'p
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Now let the parallelogram be indefinitely diminished by replacing

dp and d'p by - dp and - d'p, and we have in the limit,

^^
n-n'Ydpd'p

_ d'p.dFp-dp.d'Fp .

TVdpd>
•

^
^^

But this is equal to ^

{V . Vdpd>(Vd>d> . d . 4- VdV/) . d^ . + Vdpdy . d" . )}Fp

-Sdpd>d'VTVdpdV

«S=QO

v/

because Y(ydpd'p . Vd'pd'p)= — d'pSdpd'pd'p, etc., so that the
integral is

I^MV_V).^, = y(U..V).^, (n.)

if Ui/= UVdpd'p is the normal to the area about which the
direction of circuiting is positive.

As in the last article, we have for any plane closed curve
without loops,

)imlM(£)=V(U..V).ii'(p), (III.) ^1

dp being now a vector element of arc of the curve and A being
its scalar area.

In particular for a vector function {a) of p, we have separately

limI^= S(VU.V . 0-), Km 1^^ = V(VU.V . o-)....(iv.)

It is obvious on using the expanded form of V that we may
write

S(yui/V . (7)=s(Ui.vvo-)=sUi/V(7, (v.)

or that we may in this relation at least treat V as a vector in

combination with other vectors, it being understood that V
operates on a but not on Ui/.

This result leads us back to an interpretation of War
analogous to the interpretation of VP in Art. 54. We have

SU.VV(7= lim I^, (VI.)

or th.e limit of the ratio which the integrated component of a-

along^the arc of a plane curve ( — fSdpcr) bears to the area of that
curve, is equal to the component ( — SUr/YV(t) of the vector Wo-
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along the positive normal to the plane. This is a maximum and
equal to TWo- when the plane is at right angles to UWo- ; it

vanishes when the plane is parallel to that direction.

If SdpG- is the differential of P (some scalar function of p), the

integral jSd/oo- depends merely on the limits between which the

integral is taken (leaving aside cases in which singularities

occur), and is in fact P(p2)^P(pi) if the integration extends
from p^ to /Og. For any small closed circuit therefore thie integral

vanishes, the initial and final points of the path of integration

being coincident, and therefore

VV(7= 0, if So-d/) = dP (VII.)

Conversely, if VV(r= 0, we must have Sa-dp the differential of

a scalar P ; for in this case the integral round any small

closed circuit vanishes, or what is equivalent, the integral from

pi to p.2 is equal and opposite to the integral back by another

path from p^ to p^, or again, the integral from p^ to p^ is indepen-

dent of the path. These results will be extended to the general

case of curves which are not small. At present we remark that

VVVP= 0, or YV^P= 0, or V^P= scalar, (viii.)

if P is a scalar function of p, is involved in equation (vii.).

Art. 57. It is useful to express the operator V in various

forms. If, for example, as in Art. 50, we suppose the vector p
to be expressed in terms of three parameters u, v and w, and if

we write

^P='^'^^='pA'^' d> = |^dv= P2dv, d''p= :^dlV= p^dlU, (I.)

the symbols of differentiation d, d' and d'' refer respectively to

11, V and tv, so that symbolically

d= —.du, d' =— .di;, d"= :— .div (il.)
^u dv dw ^ ^

On this understanding, equation (vi.). Art. 54, becomes

V= n (HI.)

^PlP2P3

If the parameters are so selected that the derived vectors

Pi, p2 and yQg are always mutually perpendicular, the sj'^mbols V
and S in (ill.) become superfluous, and the expression for V
reduces to the simple form,
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If the vector p is expressed in terms of the Cartesian

coordinates x, y and z, so that p = ix-^jy-\-kz, we have

/Oi = ^' P2—J^ P3 — h and

^=v.+4+4 <-)

This last form may be regarded as the canonical form of the

operator. We have, for example, when q is the operand,

and we shall write

so that in combination with its operand V acts as a vector in

combination with a quaternion.

Again if a is a constant quaternion, we have symbolically, an
operand being understood,

V.a= m;|-+ja;|- + /ca|-= V.Sa4-SVa+ VVVa,
ox cy oz

' "P^ /-^ 7^

^x ^dy dzy-if

and in combination with a quaternion, not the operand, V still

plays the role of a vector.

In combination with itself

V-V-. = V.('^iH-i|+/4f)^y

^^''^^^'^^z^'^^^y-^^'^yk

^x^ ^f" ^z^
-^^ -^^

and generally in all combinations V may be treated as a symbolic
vector. Of course some little care is necessary when V is ex-

pressed in the general form, but it is precisely of the same kind
as the care required to distinguish between
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Ex. 1. Show that iiq=W+iX+j¥+ kZ,

'dx 'dy dz \ 'dx By dz /

+ ('^+'^^-'^]+k(— +— -— ).
\^y ^ "dxl x'dz 'dx 9y /

Ex. 2. Verify that

V.Vo-=V2.o-=-(^,+|i+^,)o-, where cT=iX+jY+kZ.

Ex. 3. Prove that Vp= -3
; VVA/3= 2A ; VUp= -2Tp-i

;
Vp-i= Tp-2 j

V2.T(p-A)-i=0 if /o is not equal to A; V=^TVAp= -T(VA-V)-M
V2 log TVAp= ; VyTp= -f'Tp - 2Tp-i/Tp.

Tt. , -,., 2V^yVAa V/?AVAa-VaAVA/?-]
[For example, VVAp= f^= -^

^^^ ^.J

Ex. 4. Prove that VAV . /o= - 2A ; VVYAV . P= - AV^P^-VSAV . P.

Ex. 5. Show that

{aV+ Va)q = 2SaV . q, (uV - Va)^= 2VaV • q.

|_±lere (aV+ Va^.g^- ^ sdpd'pd>
•'^^-

"^^Sdpd'pd^^ ^J

Ex. 6. If P and Q are scalar functions of p, show that

V.P$= VP.(2+ V^.P.

Ex. 7. If jP and g- are quaternion functions of /), show that

where the suffix is intended to denote that the affected symbols are not to

be operated on by V.

Ex. 8. Interpret the expressions

YVV.PQ', SVVV'.PQ'R',

where the accents indicate that a marked symbol is to be operated on by the
correspondingly marked V.

[If P and Q are scalars, the first expression is V(VP)(V^), or

^^('dPdQ_dPdQ\
\di/ dz dz dy

/'

This last expression is also true when P and Q are quaternions.]

Ex. 9. Find an expanded form for V^ . PQ.

Ex. 10. Find the expression for V in terms of the usual r, and <^

coordinates. [Use the relation (iv.).]

^^"Ex. 11. Show that g' . V= -K , VKg- where V operates on q in situ.

[It is sometimes convenient to place the operator to the right of the
operand.]

Ex. 12. If fn(p) is any homogeneous function of p of the order n which
O vanishes under the operation of V^ the function Tp~^"~^./„(/o) will vanish

\ under the same operator.
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[Expressing that V^(Tp^. /*,»)= 0, we may write this relation in the form

(\/+ Vy.(Tp'"'. fn)=0, provided we remove the accents after the operation.

This expands iiito Vn>"^./;+ 2SV'T/)'-V./„+ T/3"". V%=0, and observing

that SpV .fn= -nfn because /„ is homogeneous in p, we easily find the

equation reduces to m{2n + l'+m)= 0. This result is of importance in the

theory of spherical harmonics.]

Art. 58. Given a quaternion function p = F(q) of another

quaternion q, we have seen how to express d^ in terms of dq
(Art. 51). It is a more difficult problem to express dq in terms

of dp, and we postpone the general method of solution for the

present.* However, there are a few cases in which the problem

can be solved directly, such as to find the dififerential of the

square root of a quaternion.

Here p= q^ or p^ = q, (i.)

so that pdp-\-dp.p= dq (ii.)

Multiply this by Kp and into p, and two relations equivalent

to {11.) are obtained,

Kp .p . dp-\-Kp . dp
.

p = Kp . dq ;
p. dp .p-^^dp .p^= dq . p. (ill.)

Adding, we have

d^ . (Tp^+ 2pSp +p^)= Kp.dq-\-dq.p

because p+Kp= 2Sp, Kp.p = Tp^;

or 4 . dp . pSp = Kp .dq-}-dq .p

because Tp^ = (Spf^(Ypy, p^ = (Spy-\-2Sp .Yp-\-{Ypf;

and hence ^^^ Kq^dq.q-^+ dq
^^^^

4S^2

As another example, under which this might have been in-

cluded, to find the differential of the n^^ root of a quaternion

(n being an integer), we have

p^qn, q—p^^ dg = dp._p'*-^-|-i5.dp.jp*'-2+...+_p"-^dp. (v.)

Multiply dq into p and subtract the product pdq, and

dq.p^pdq — dp.q^qdp, or V . VdgVp= V . VdpVg. (vi.)

Thus, with an indetermined scalar x,

^,, Y.YdqYp^-x . Y.YdqYp
, /^ , . ^ \ / xVdp = Y^^^^ or dp= ^^

^+ (^Sdp+^|(vii.)

Turning to (v.), we have on substitution from (vii.),

dg = 71 .^"-^SdpH-Vdp .j^'^-^+p . Vdp
.

p"-^+
. . .

+j9'^-^Vdp

= n.p^-^Sdp+^,np^^-^+
'^^^^f^

'"'$ x(^"-^+ Kp.i>»-H(Kp)2._p«-2 + ...-h(Kp)»^-^),...(viii.)

I

* See Art. 150, p. 273.
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because q and p are commutative in order of multiplication,

and because ap — Kp . a, or a(Sp+ Vp)= (Sp— Yp) a if SaY^ = 0,

the vector V . YdqYp . (Yg)'^ being perpendicular to Yp. Again,

^ +jvp.^ +etc._ ^__j^^ _^,^^

since ^ and K.p are commutative in multiplication, and the

expression (viii.) reduces further to

dq= n.p^'-'Sdp+^,np^-'+
^
'^^^^^ ^ (ix.)

Thus we have by (vii.) and (ix.) on elimination of x

'^^" Yq V nqYp)^ nq ' ^"^'^

and the sought differential dp is expressed in terms of ^, q and dq.

diflferential oifq in the form

d.fq-^Aiq, dq\ (i.)

;ion of q and of dq, linear in the latter, the
tressed by

d',fq=f2(q. dq)+Mq, d^q), (ll.)

where /2(g', dq) is homogeneous and quadratic in dq.,

A similar process holds in general, and in particular if dq is constant, sa
that d^q= 0, d^q—Oj etc., we have

d-./5'= d./^_ife, dq)=Mq, dq) (ill.)

Suppose that f{q) and its successive differentials up to the m*** are finite

for finite differentials of q^ and consider the function

F{x)=Ag+^)-f(q)-^.A{q,p)-^^Mg,p)...-0^f„,,(q,p), (ir.)

in which .r is a scalar and q and p are two quaternions. Differentiating

with respect to ^, and leaving p and q constant, we find by the general
relation (in.),

-^=fi{q+ ^p, p) -Mq, p)-\-fi{q, p)...-^^^^:^fm-i{q, p\

^'^F(x) X x^~^
-^^ -f2{q+^p, p)-f2(q, p)- i-fsiq, p)"--c^^;—^fm-i(q, p),

(^ Art. 59. Writing the first differential oifq in the form

to indicate that it is a function of q and of dq, linear in the latter, the
second differential may be expressed by

...(V.)

i

d'^-^F(x)
g^m-l ^fm-l{q+ OCp, p) -fra-l{q, p),

^Jn =Mq+^p,p).

Putting a;=0 in (iv.) and (v.), we see that F{x) and its successive

deriveds up to the order m-l vanish when ^= 0, and consequently

n^)=h:iMq. pHr^\ (VI.)
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where r„i is some quaternion function of :r, q and py and where by (v.)

lim -'^;^=\im{f,n{q,p)+r,n)=fm{q,p) (vii.>

By taking x small enough it is consequently possible to render r,»

infinitely small in comparison with /,„ (5', jo), or

I

lim ^/!'*"
,= Q (viii.>

Replacing .vp by p in (iv.), what we have proved is that

where r^ is a function of q and jo, which becomes evanescent in comparison
with fmiq, p) for sufficiently small tensors of p. This theorem is what
Hamilton calls " Taylor's Series adapted to quaternions."

In certain cases, for a large value of w, the term

^{U{q.p)+ rjf

becomes negligible, and we may write the expansion in the usual symbolic
form, ,

2
/(^+ji,)=ey(^)=/(^)+ -./j(^,^)+ j-2/2(g',^)+etc.; d^=p, (x.)

or more explicitly for a vector variable,

- /(/t>+ C7)= e-s«^./(p)=/(p)-istJV./p4-|^ .(StJV)2./(p)/etc (xi.)

Art 60. Instead of differentiating a second time with the same char-

acteristic d, let the diflferential of

d/(^)=/i(?, ^q)

be taken for a new characteristic, d' corresponding to the differentials di'q

and d'd^' of q and dq. The result may be written

d'd./(?)=/i(g, d%)+/2(^, dV, d^), (I.)

where in full,
f / 1 \ "^

f^{q, d'q, dq)= \imn\^fi{q-\--d'q, dqj-f^{q, d^)j. (11.)

Reversing the order of differentiation,

dd'./(?)=/i(9, dd'q)^-f^{q, dq, d'q) (ill.)

We shall now prove the relation

Mq^ '>\ «)=/2(?» «> ^X (iv.)

where r and s are any two quaternions replacing dq and d'q in the functions

whach occur in (i.) and (m.). We have by (11.),

and from symmetry this is equal to f^iq^ s, r).

I
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More generally, ifhy siiccessive differentiation of a function f(q), a function
f„(q, rj, r2, ... r„) is constructed^ the order in which tlie quaternions r^, rg, ...r^

are grouped ainoncf themselves is iminaterial.

In virtue of (iv.), it appears that

d'd./(^)-dd'./(^)=/;(^, d'dg-dd'^); (V.)

and in general this difference vanishes if, and only if, d'd5'= dd'g'.

Ex. 1. If ^ is a scalar function of p, and if d$= Si/dp, di/= <^d/o, show
that the function ^ is self-conjugate, or that Sa<^/3=S^<^a, where a and (^

are any two vectors.

[This is a particular case of (iv.). Compare Art. 51, Ex. 2, and Art. 62.]

Ex. 2. If 1^1 and v^ are duwy two vector functions of the vector p ; if

dv|=
(j^i

(d/a) and dv2= <^2(^p)) ^^^ i^ ^ operates on all functions of p on its

right, show that

SviV . SvijV . - SvaV . SviV . = S(<^iVo - </>2Vi)V . ;

or in other words prove that the two operators produce the same effect on
any function of p.

^ Ex. 3. *lt p, q and r are any three quantities or operators, not necessarily^ commutative in order of operation or multiplication, show that

[[P, qy]Hlq, r]p] + [[r, p]q]^0

where [p, q]=pq-qp, [[p, q], ^J=[p, qy-r[p, q].

Ex. 4. If p and q are any two quantities or operators, show that

^ e-'ipe^=p+^+ :^-{- ^ ^^ 3
+ etc., where Pn=[Pn-iiq];

and hence prove the equation connecting operators,

where Vi and V2 are any given functions of p, where Vg is a determinate
function of p and where V operates only on functions on its right.

Art. 61. To find a stationary value of the scalar function

f(p)> whenever a stationary value exists, we equate to zero the

first differential

d/(p)= S.dp (I.)

of f{p) for all differentials dp. This requires the vector v to be
zero, for otherwise Svdp cannot be zero for every differential d;9,

and the stationary values are obtained by substituting in f(p)
ihe vectors p which satisfy the equation

v= (II.)

If the stationary value is subject to the condition

9(p)= 0,. (III.)

where g(p) is a given scalar function of p, the differential dp
is no longer arbitrary, and the conditions are

df(p)=^Spdp = 0, dg(p)= S\dp=^0, (iv.)
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where X is a new vector function of p defined by the nature of

the function g{p). Considered geometrically the condition (ill.)

requires the vector p to terminate on a certain surface and con-

strains the differential dp to be tangential to the surface as

expressed by SXdp = 0. The function f{p) has a stationary value

if d/(/o) vanishes for every differential dp at right angles to X.

In other words we must have v parallel to X, or

^+a:;X = 0, or Vi/X= 0, (v.)

where a; is a scalar multiplier. The solutions of (ill.) and (v.)

afford vectors p which render f{p) stationary in value.

Again if there are two equations of condition,

g{p)^0, h(p) = 0, (VI.)

the differential of dp consistent with these conditions must satisfy

dg(p)= S\dp= 0, dh(p) = Sjmdp= 0, (vii.)

so that dp
II
VX)U, and if in addition f(p) is stationary in value so

that d/(/o)= 0, or Si/d/o = 0, we must have v coplanar with X
and JUL, or

\v+xX-\-yiii = 0, or Sv\jul = 0, (viii.)

where x and y are two scalar multipliers. Here the three

vanishing scalar functions of p, g(p)= 0, h(p) = and Sj/X/x = 0,

serve to determine a certain number of vectors p as vectors to

the points of intersection of three known surfaces, and substitu-

tion of any one of these vectors in f{p) will give a stationary

value.

For the solution of the equations, no general rule can be laid

down. Sometimes, indeed most frequently, it is more convenient
to deal with the equations (v.) and (viii.) involving x and y
rather than with the results of elimination of these scalars.

To examine the nature of the stationary values of f(p), it is

necessary to proceed to second differentials. For example when
there are two equations of condition, we have in addition to (vii.)

(compare Art. 51, Ex. 2, Art. 60, Ex. 1),

d^g(p) = SXd^p+ Sdp(l>^dp = 0, d:%(p) = SjULd^p-hSdpcl>^,dp = 0, (ix.)

where 0^ and ^^^ are two linear vector functions determined by
the functions g{p) and h(p), and we must consider the sign of

dJ(p) = Si^d^p-\-Sdp^dp, (X.)

when appropriate values of p and dp are substituted therein.

By adding the equations (ix.) multiplied by x and y to this we
havej by (viii.)

d!/*(/o)= Sdp(^+fl;^^-h2/^Jdp, where dp
||
VXyu, (xi.)

J.Q. F
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the scalars x and y being given by (viii.) in terms of v, X and yu

by means of the relations Yiulp = xY\iul, Yi/\z=yY\iuL, in which
we suppose the appropriate value of p to be substituted. For the

negative sign, f{p) is a maximum, while it is a minimum if the
sign is positive.

In like manner, when there is only one equation of condition,

we find

dJ(p) = Sdp((p-{-x<l>)dp, where SXdp = 0, p-\-x\-0, (xii.)

and if dy(yo) is positive for every dp perpendicular to A the

function f(p) is a minimum ; if dy(/o) changes sign for some
vectors dp perpendicular to X, the function is merely stationary

;

if dy(yo) is constantly negative for the differentials dp, the

function is a maximum.

Ex. 1. Find the stationary values of T/o, subject to the condition,

(p-a)2+ a2 = 0.

[Here dTp= -SU/3dp= 0, • where dp satisfies S(p-a)d/)= 0, so that

JJpWp — a, or pl|a, or p= .ra say, and the condition gives

(:r-l)2a2+ a2^0, or ^= l±aTa-i,

so that p= a ± alJa.]

Ex. 2. Find the stationary values of Tp when (p — ay+ a^ — 0, S/3p— 0.

EXAMPLES TO CHAPTER VII.

Ex. 1. If op=/o= a'^, Ta=l, Sa^= 0, the locus of the point p will be
the circumference of a circle, with o for centre, and ob (= /?) for radius, and
in a plane perpendicular to oa ( = a).

Ex.2. If OF= p=Y .a*f3, 7= oc = Vaj8, Ta= l, the locus of p is an
ellipse, with its centre at o, and with ob and oc for its major and minor
semiaxes.

Ex. 3. If under the same conditions as in Ex. 2,

OB'= ^'= a~WafS, OP'= p'= a~Wap,

the locus of p' is a circle with ob' and oc for two rectangular radii. The
equation of the circle may be written

p'= a*fi\

Ex. 4. If op=/o= a'y8, Saf3=0y the locus of p is a logarithmic spiral with
o for its pole.

Ex. 5. If op=/o=V . a*/3, the locus of p is an elliptic logarithmic spiral

—

a plane curve which may be projected into an ordinary logarithmic spiral.

Ex. 6. The equation

p= cta+ a'ft with Say8= 0, Ta=l,
represents a helix, while the locus of the perpendiculars to the axis of the
helix which intersect the curve is represented by

p= cta+ua^l3,
where uis sl variable scalar.*

•^ These Examples are taken from the Elements of Quaternions, Art. 314.
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Ex. 7. If we project the ellipse

p= a cos x+ 13 sin x

on a plane at right angles to the vector A, the vectors a and /5 will project

into the principal semiaxes of the projection provided

S.YXaVXfS^O.

(a) They will project into equi-conjugate radii if

TVAa=TVA/5.

(6) If SaUA=±V[i(/52-a2)±V{i(/3^-aT+ (Sa/3)n],

S/3UA= Tv/[i(a^-i8^)± V{i()82-a2)2+ (Sa/?)2}],

the ellipse will project into a circle—one of four, of which two are imaginary,

(c) The squared radii of the circles of projection are

-Ka'+ i82)T^/{i(/32-a2)2+ (Sa^)2},

the upper sign corresponding to the real circles.

Ex. 8. A circle of radius ±n~'^Tf3 rolls on a circle of radius T^ and
centre o, and carries with it a point p at a distance lT/3 from its centre.

The locus of the point p is represented by

OP= p= (l+9i-i)a«j8-^a<i+»>*^, Ta= l, Sa/3= 0.

(a) Prove that dp=^(l+%)a(/)-a'^)d^,

and assign the geometrical interpretation.

(b) If the variable scalar t represents the time, the equation of the hodo-
graph * is

p= i;r(l +n)a{n-^a'/3 - Wi+")«/3),

and show that this curve may be generated by a point carried by one circle

rolling on another.

(c) Show that the condition for a cusp on the path of the point p is

and discuss fully the nature of this equation.

(d) Prove that the vector of acceleration of the point p for uniform
motion of the circle is

p=^7r\l+n){{2 + n)a'f3-(l+n)p},

and determine the condition that the acceleration may momentarily vanish.

(e) The condition for an inflexion is found by expressing that Udp is

stationary or that Vd/od^p= 0, and it may be reduced to

l^n\l +n)-ln{2+ n) Sa'^+ 1 = 0.

(/) Show that the inflexions lie on the circle

J (3 + 7^)(l+7^)-W(3+ 2n)\^
^~1 n(2+n) J

^^•{2+n)

Ex. 9. Under the same conditions, what curve, or rather what system of

curves for various values of the scalar I is represented by p= j8^+ ^a'/3?

* Th^ hodograph of an orbit is the locus of the extremity of a vector drawn
from a fixed point to represent the velocity of the moving body.
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Ex. 10. (a) If oq = cf){t) and OQ'= i/r(?*) are the equations of any two
curves the relation

Td.<f>{t)= Td.ylr(u)

is equivalent to a diflferential equation connecting the parameters so that
corresponding values of the parameters in an integral determine equal arcs

measured from fixed points on the curves.

(b) If the condition (a) is satisfied, the quaternion

d.<m
d . yjr(u)

is a versor which renders the tangent to the second curve at u parallel to

the tangent to the first curve at the corresponding point t.

(c) When the curves lie in a common plane, the condition (a) being still

satisfied, the equation

is'the locus of the pole of the second curve when it rolls along the first so

that points answering to corresponding values of the parameters t and u
remain in contact.

(d) The vector tangential to the roulette at the point p is

'^"-{^U)-^'dfj
and this vector is at right angles to p — cf)(t) because the quaternion of (6) is

a versor.

(e) The equation of the normal at the point p is therefore

CT= OP+^PQ= (^(0+(^-l).^. V^W

Ex. 11. The earth and a planet being assumed to describe circular orbits

round the sun, show that the apparent path of the planet is represented by

where c is the radius of the orbit of the planet and b that of the orbit of

the earth, where F and E are the periodic times of the planet and the earth,

where y and /3 are unit vectors normal to the planes of the orbits and where
a is a unit vector directed towards a node.

{a) Show that the equation

determines the values of t corresponding to the "stationary points" -at

which the motion changes from direct to retrograde or vice versa.

Ex. 12. Show that the equation

p=hYa^+ ua*f3 where Ta= l, Sa/3=0

represents a cylindroid referred to its centre, and deduce the scalar equation

^Vap2Sap= 2kSf3pSal3p.

Ex. 13. Describe the loci represented by the following equations :

(i) p=aSA.UT;
(ii) p= aSAUT+ y8S/xUT;

(iii) p^aSKUT-hfSSpXJr+ ySvVT,
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where a, f3, y, A, /a and v are given constant vectors, and when the auxiliary

variable vector t is perfectly arbitrary.

(a) What modifications must be made in your interpretations when t

remains constantly inclined to given direction ?

Ex. 14. (a) If Spdp= 0, show that Tp is constant.

(6) If V/t)dp=0, it follows that U/j has a fixed direction.

(c) If Spdpd^p= 0, show that JJYpdp has a fixed direction and the vectors

p are parallel to a fixed plane.

II

Ex. 15. Show that

T{l+q) ={l+q)Hl+^q)K U(l +^)= (1 +#(1+K^ri
(Elements of Quaternions^ Art. 343 (9).)

Ex. 16. Prove the relations

U(a+0)= Ua.(l+a-;3)*(l+/3a-')-*;^g^^= ^(l+a->;8)'*(l+/8a-')"*;

and find the development to the third order when TfB is small in comparison

with Ta.

Ex. 17. Supposing the earth to describe a circular orbit round the

sun, show that the parallactic ellipse of a fixed star is represented by

t7=-V.y*ao-i.Uo-

where o* and y^'a are the heliocentric vectors to the star and to the earth

respectively.

(a) Show also that

UVo-y.Tao-i and U . o-Vo-y . TaSyo-i

are the principal vector radii of the parallactic ellipse.

Ex. 18. If V is the (scalar) velocity of light and p the velocity of the

earth in its orbit, the aberration of a star is represented by

U(yU(r+p)-Uo-.

{a) The earth's orbit being supposed circular, the aberrational ellipse is

given by
trr= - v-hiVV . y'+^ao- . Uo-

where u is the scalar velocity of the earth.

Ex. 19. Assuming the effect of refraction to be K times the tangent of

the zenith distance, show that a star in the direction of the unit vector a-

appears to be in the direction of the vector

where k is the unit vector directed to the zenith.

Ex 20. If p is a point in a body attached at b and c by universal joints

to two. bars ba and cd having fixed universal joints at a and d, show that
the mo'tion of the point p is subject to the conditions implied in the
equations

XP= p=pap~^-\-qeq~^, VD= p = lyr'^+ qrjq~\
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where a, y, e and rj are fixed vectors and where p, q and r are variable

quaternions
;
prove that the envelope of the point may be determined by

identifying the equations

SYdqq-^ . Yqeq-^p= 0, SYdqq-^ . Yqrjq-^ p'= 0;

and show that these conditions require the five points abpcd to be coplanar.

Ex. 21. If Sordp becomes the differential of a scalar function of p when
multiplied by a suitable factor, show that So-Vcr=0.

Ex. 22. If dv is the directed element of a surface at the extremity of

the vector p, the element of solid angle it subtends at the origin is

Ex. 23. Show that

d.e^=(^Sdq +S^.Yqy+Y .^.Ye<^. . .

Ex. 24. The differential of a function of the vectors p and o-, cr being a
function of /o, may be written in the form *

d . P= - Sdp(Vp - Vp'So-'Vo-) . P

where Vp and Vo- operate respectively on p and on o- as explicitly involved
in P, and where Vp' operates on p as involved in cr', the accents being
removed after the performance of the indicated operations.

(a) If P is a scalar function of p and cr, and if cr is a function of p which
renders P constant,

VpP-Vp'So-'VaP=0.

(6) If the same function o- renders constant another scalar function Q of

p and cr, the relation

(P,Q)= S.VVerPV,rQVV^ where (P, Q) = S(VpPV^Q- VpQV^P)
must be satisfied. And if o- can be derived from a scalar function of p by
the operation of V, we must have

(P, Q)= 0.

(c) If Ai, /xj, A2 and /xg ^i'® ^^7 vector functions of p and cr, the operator

S(AiVp+/XiVa-)S(A2Vp+/x2V<.)-S(A2Vp + /x2Va)S(AiVp+jaiV«.)

reduces to the form ^{X^^p + ixi^^a)-

(d) If Pv denotes the operator S (VpPVo- - Vo-PVp), we have

PvQ=-QvP= (P,Q),

where P and Q are scalar functions ; and if E is any third scalar function,

the expression

PvQv.R-QvPv.R=Pv(Q, R)+Qv(R, P)=(P, (Q, R))+(Q, (R, P))

does not involve the second deriveds of R.

(e) Hence (P, (Q, R))+(Q, (R, P))+(R, (P, Q))^0 ;

and the operator (P, Q)v= PvQv — Qvl*v-

* Compare Jacobi's method of solution of partial differential equations and
Lie's work on Pfaff's Equation.
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Ex. 25. Bright curves are seen on a surface owing to light reflected by
scratches on the surface from a source at A to an eye at B. If the scratches
are represented by putting u= const, in the equation of the surface

p=<f>(t, u\ show that the equation of the curves may be found by combining
the equation of the surface with the result of expressing that

T(c^-a)+ T(c^-/3)

is a minimum with respect to t.

(a) If the equation of the surface is/p=0 and if Fp= 2i is the equation of

a family of surfaces through the scratches, the bright curves are given by

fp= 0, SVf^F{V(p-a)+ V{p-f3)}=0.

(b) The bright lines due to the grooves made in turning a surface of

revolution {Tp=fSkp) lie on the surface

Skp{V(p-a)+ V(p-/3)}= 0;

and meridian grooves on the same surface give rise to bright curves on the

SYkpiVp + kfSkp){V(p -a) + V(p -/3)]=0.

Ex. 26. The differential of T(p — a) corresponding to a given differential

of p ceases to be determinate when p comes to coincidence with a unless we
know a law according to which p tends to coincide with a.



CHAPTER VIII.

LINEAR AND VECTOR FUNCTIONS.

Art. 62. A vector function of a vector, distributive with
respect to that vector, is called a linear vector function.
Thus if

(li(a+ l3)= cpa+ <l>/3,
S0a = O, S^/3 = 0, (l.)

for all vectors a and ^8, the function is linear and vector. As
a corollary to the equations of definition

4)(xa)= x^a (II.)

if X is any scalar.

Given the vectors

a=<l>a, ^' = ^13, y=0y, (m.)

the results of operating by cp on any three given and non-
coplanar vectors, the function ^ is determinate ; for by (i.)

^^-
s^;^^;

' ^'"-^

since pSa^y = XaS/3yp for any arbitrary vector p.

With a new signification of the vectors, a, I3\ y, a, /S, y, any
linear function may be reduced to the trinomial form,

^p — a Sap+ /3'S/3/o+ ySyp, (V.)

in which either set of vectors a, /S', y or a, /8, y may be

arbitrarily assumed. For if we resolve ^p along three fixed

vectors a, ^'
, y\ the coefficients in the resolution must be scalar

and distributive functions of p ; that is, they must be of the form
Sap, S)8/o, Sy/o. If, on the other hand, we assume a, ^ and y, the

set (Xy /3' and y follow, being 0V/3y : Sa/3y, etc.

Thus in any case, the general linear function is seen to involve

nine constants, the nine constituents of three vectors a, /5 and y,
or a, ^' and y.

For arbitrary vectors, a and /3, if

Sa0/3 = S/3^'a, (VI.)
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the function <p' is said to be the conjugate of the function
<f>.

The conjugate for the trinomial form (v.) is

0V= aSa>+ ^S^/)+ ySy> (VII.)

Ex. 1. Given (T= <f>p
= a'Sap+ fS'Sf^p+ y'Syp,

show that

p= <^-io-= (V/3ySy8y(r + VyaSy'ttV+ Va/JSa'^'o-) : (Sa'/3ySaj8y).

Ex. 2. Show that Va/o/? is a linear vector function of p, and find its

conjugate.

Ex. 3. Is aTp a linear vector function of p

Art. 63. From a geometrical point of view the equation

(r= <pp, (i)

in which ^ is a given linear and vector function, and in which
the vector p is arbitrary, establishes a linear transformation from
vectors p to vectors a-.

Equal vectors are converted by (p into equal vectors: right

lines transform into right lines, and planes into planes, as

expressed by the relations

(r= <pa-{-tcl>/3 if p = a+ t^:

(7= 0a+ ^/5+U0y if p = a+ t/3+Uy ...(ll.)

—consequences of the formula of definition (Art. 62 (i.)).

The plane whose equation is

S(/o~a)/3y= becomes S(o--^a)0/50y = O ; (ill.)

and the vector area

Ya^ transforms into Ycjyacj)^: (iv.)

while the volume
Sa)8y becomes S^a^/5^y (v.)

Ex. 1. Verify that

S^a^^_S^a;^<^y'
SajSy ~ Sa'^^y' ^ "'"'''

where a, ^, y and a, ^', y' are any two sets of non-coplanar vectors,

i Ex. 2. Prove that

y<l>a<f>(3 + Ycl>y<f>8=Ycfi€cf>C if Ya(3+Yy8= Y€C.

[Take a along the edge of the planes of a/? and of yS, and reduce Va/?
and Vy8 to Ya'/3' and Va'y', etc.]

E:^.'.3. Prove that V^a^^ is a linear vector function of YafS.

[This is practically included in the last example. Verify by the trinomial
form.]
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Art. 64. There is an inverse transformation which converts

vectors o- into vectors p, so that

p = (l)-'^a- if o-= 0/o; (I.)

and we propose to investigate this transformation.

Writing 0p = o- = yX^, (ll.)

the conditions of perpendicularity of the vectors a-, X and cr, jul give

SX0p = O, Syu0yo = O, or Sp^'X = 0, Sp<p'iuL= (ni.)

by the property of the conjugate function (Art. 62 (vi.)).

Thus the vectors (p'X and 0'/x are at right angles to p, and con-

sequently

mp = Y<f>'X<f)'/ix
— \l/VXiuL, or mp = yfr(T, (iv.)

\lr being an auxiliary linear and vector function defined by the

equation

xlrYa^= Y<p'a^'/3, (v.)

in which a and ^ are any arbitrary vectors. (See the last

Article and its Examples.)
To determine the value of the scalar m operate on (iv.) by

S^V, w^here v is an arbitrary vector, and we have

mSX/uLv= S(p'X<p'iuL<l)'v, (VI.)

because Sp(p^i/= Sp^p— Spar= SpX/uL.

Operating likewise on (iv.) by ^, we have

r)i^p = <p\l/-cr or ma = (pyfy-a-

;

and replacing a- by 0/) we also find

mp= V^0/3

;

so that we may write symbolically

m= 0l/r = l/r0, (vii.)

with the interpretation that the effect of operating first by xjr

and then by cp on any vector, or first by and then by \/r, is to

multiply that vector by the scalar m. This relation shows that

7n is an invariant, or absolutely independent of any particular

set of vectors X, fx, i/ in (vi.), for by (v.) xf/- is independent of the

vectors X and /x in (iv.). (See also Ex. I, Art. 63.)

Thus wherever m is not zero, we can always pass from vectors

cr to vectors p by the relation

mp^xfrar, (VHI.)

m being calculated by (vi.) and \fr by (v.); and it will be

observed that in the calculation of this scalar and this auxiliary

function, we only require the direct operation of the function 0'

on vectors.
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Ex. 1. Show that the function yjr transforms vector areas into vector

areas when vectors are transformed by the function
<f)'.

Ex. 2. Show that volumes are altered in the ratio m : 1 in transformation

by the function
(f>'.

Ex. 3. Show that yjr' is the conjugate of -yfr if yjr'Yaf3=y(f)acf)/3.

[Expand SVy8V^a<^/?, and prove that it is equal to SVa^V<^'y^'8.]

Ex. 4. Show that volumes are altered in the ratio 7n:l by the trans-

formation produced by </>.

[mSa^= SacfiflS= Scfy'a^l^fS= S . f<^'a/3.]

Ex. 5. Follow in detail the geometrical meaning of the transformation

employed in deducing
mp— ^cr from G = cf)p.

[See Art. 63 (iv.) and Art. 150.]

Art. 65. The transformation in the last article fails in one

case—if m is zero. In that case the vectors cr are all coplanar,

the volume of any parallelepiped formed by them being zero

(Ex. 4, Art. 64); and because in general myo = ^o- if (7= 0/o, in

this particular case, the function i/r destroys every vector in the

plane.

To cover this case, consider the general transformation for an
arbitrary function (p,

cr= (<p-\-c)p = <l)cp and mcp= \l/-ccr, (l.)

where c is a scalar and where rric and yp^c bear the same relation

to ^4-c that ni and i/r bear to <p. It appears at once by (v.) and
<vi.), Art. 64, that

mcS\/uLv= S(<p' -{-c)\(<l>' '^c)/ul(<P' +c)v,

^^eVX/x = y(0'+ c)X(0'+c);x; (II.)

so that if we write

mc = m-\-m'c+ ni"c^+ c^, \fre= ylr-\-cx-\-c^, (m.)

we shall have

m'SX/xi/= S\<p'jui(f)'v+ S^'Xyu^V+ S^'X^V^']
m''S\iuii;= S^'XlULV+ S\^'lULV+ S\iuL(p'v, V (IV.)

xVXyu = V^V4-VX0V. J

Now for any arbitrary value of the scalar c, the scalar vig is an
invariant, and therefore, separately, the coefficients in its expan-
sion m, rri and m' are invariants, or are independent of X, /x

and y.

By i(i-) we have identically for all scalars c,

^c= (l>c'^c = V^c^o (V.

)
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or m+ m'c+ m'c^+ c^ = (0+ c)(Vr+ cx+ c^)

= V-0+ c(Vr+ x0)+o2(x+ 0)+ c^

and therefore equating the coefficients of c on each side

m = 0V^= i/r0; m' = x/.+ 0x = \^+ X^; ^^" = + x; •••(^1-)

it being understood that these equations denote that equal results

are obtained by operating with right or left hand numbers on an
arbitrary vector.

One of the transformations most frequently required in

quaternions is to invert a function 04-c, or to replace an
equation o-= (0+ c)/o by mcp = yfrc(T\ and in general the process,

due to Hamilton, as given in the text is the shortest and most
certain. We first calculate V(^'+ c)X(0'+ c)yot and express it in

terms of VXyu. Then we either calculate rric from (il.), or it is

sometimes better to calculate it directly from (v.), namely from

In particular

mp = \lra-, m'p = \j/-p + x^' rjri'p — xp+ (T if cr = <pp; ...(vil.)

and thus the general solution of (r=(pp is wfp^x^'^'^P ^^ '^^ ^^

zero with the implied condition i/ro-= ; while if m= in' = 0, the

general solution is m"p = (r-\-xp with the implied conditions

-^o-= 0, \j/^p-{-xar= 0. In the first case (m = 0, m'H=0), the vector

p may be considered arbitrary in yp^p—there is in fact nothing to

determine it. But as \/r destroys every vector in the plane of the

vectors <t, it is really only the component of the vector normal to

that plane that is of any account in yjrp. In the second case

(m = m'= 0), similar remarks apply ; the vector p is arbitrary on
the right subject to the condition \j/-p-\-x(r= 0. The function i/r

may vanish identically, and this case we shall consider in Art. 66,

Ex. 1. Determine the functions m, yfr and X for the function cf)p= ^aSap.

[fp= SVa/5S/?'a> ; Xp= 2VaVa> ; mp= ^fp= SSa/^ySy '/?'a' . p.]

Ex. 2. Find the auxiliary functions for cf>p= YXpp.

[Find ^c and i/^c for AS/xp+ /^S/aA= <^o/o.]

Ex. 3. Solve the equations o-= VaV^/) and (r= Yap by the general

method, and directly.

Ex. 4. Express t/^c' and Xc' in terms of \jrc and Xc-

Ex. 5. Construct a linear vector function which renders four given

vectors parallel to four others.

[The data are <i^a || a, </)/5
1|

/3', ^y ||
y', 4>8\\ 8', and the function is

where c is arbitrary.]
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Ex. 6. Prove that

m'Yap= Y<f>'a<f>'f3+ <f>Ycj>'af3+ <^Va<^'/3
;

m"YafS= Ycf>'aJ3+ ya<f>'^+ 4>Va^.

[See equation (vi.). These relations are often useful.]

Ex. 7. Prove that

m</>'Va/?= VV^ai/r^ ; yfrYa\fr'/3= mYcf>'af3 ; <i>Ycf>'afi= Vai/r'/?.

Ex. 8. Prove that the equation

p= {<f>+ t)-^a, or Y((f>p-a)p= 0,

a being a fixed vector and t a variable scalar, represents a twisted cubic.

[Show that it cuts an arbitrary plane in three points.]

Art. 66. From tlie equations of tlie last article connecting

<p, X and yjr we deduce

^= ni'/— (j); \/r= m'— m''0+ 02; =m — m'^+m'^— 0^; ...(i.)

and we have the corresponding equations for the conjugate <p\

^' = w!'- 0'
; xfr'^m- 7Yi'(l>'+ ^'2

; =m

-

m:<t>'+ rn"(j)'- (j>'^. (ii.)

These may be proved by reflecting that

Sa02^= S0'a95>/3= S/30'V etc.

;

so that for example

Sax/3= Sa(m"- ^)^= S^(m''- ^0 a = S/^x a,

and from the third and fourth of these we have {m"— (f))a = ^a
because /3 is perfectly arbitrary.

Let g^, 02 and g^ be the roots of the scalar cubic,

= 7n— m'g+ rri'g'^ —g^= 0; (ill.)

so that m= g^g,_g^, m! ^g^g^+g^^-^-g^g,^, m^'^g^+g^+g^. ...(iv.)

This scalar cubic is called the latent cubic of the function, and
its roots are the latent roots of the function 0.

We may now write the symbolic cubic (I.) satisfied by the

function (p in the form

i^-9i)(^-g2)i<p-9s)= 0, (V.)

and the same symbolic cubic is satisfied by (p\ Hence

^(<P'-'9i)a.(^-92){<f>-gs)^= Sa{<p-g,)(<p-g2){cp--g^)P= 0(Yi.)

whatever vectors a and /3 may be ; or in other words the vector

{<l>—gi)a is perpendicular to the vector {(p—g2){^—9B)^' The
vectors a and ^ being both arbitrary, it follows that one or other

of the vectors {<!>'— gi) a or
{(l>
— go){(i> — g^)^ must be parallel to a

fixed direction.

But {(/>'— gi) a is not generally parallel to a fixed direction

whe^i'the vector a is arbitrary, for if it were we should have
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where a and /3 are quite arbitrary ; or symbolically,

\^-5^iX+5'i'= 0, or (<p-g2)(i>-gs) = 0, (ra.)

utilizing (i.) and (iv.), and replacing tyi" —g^ and "in'—g^m" -\-g^

by their values, g^-^-g^ ^^^ g29z- ^^ ^^^® case, which is quite

special, the symbolic cubic of the function degrades into a quad-
ratic (VII.).

We conclude therefore that the product of a pair of factors of

(v.) operating on an arbitrary vector reduces it to a fixed direction,

and writing

(<p-92)(<p-93)p II 71 ; {<l>-gs)(i>-gi)p II 72;

(0-5^1X9^-^2^1173 (VIII.)

the directions of the vectors y^, y^, y^ are fixed and are called the

axes of the function ^.

We have by (v.),

07i = ^i7p 072= 5^272' 4>yz= 9zYz'^ (ix.)

and these vectors are generally distinct if the latent roots

9v 92') 93 ^^® unequal, and they are also generally non-coplanar.

Resolving then any vector p along y^ y^ and yg we have

P = ^7i+ 2/72+ ^73; (X.)

(<l>-9i)p=yi92-9i)y2+<9s-9i)y3'^

(<p-92)p = ^(9i-92)yi-^^(9B-92)ys',

(<l>-9s)p==^i9i-93)yi+yi92-93)y2'^

(<p-92)(i>-93)p = H9i-92)(9i-9z)yi',

(</>-9s)(<l>-gi)p=y(92-93)(92-9i)y2'^

{<p-9i)(^-92)p = ^(9s-9i)(93-92)ys'

Thus {(t>—g-dp is coplanar with the pair of axes y^ and yg, and
if y^ is the axis of the conjugate function corresponding to the

root g-^, it follows from the equation

^pW-9i)yi=^^ = ^yi{<t>-9i)p (XI.)

that the vector y^ is perpendicular to the plane of {(t>—g-^p, and
in particular to the vectors yg and yg. If vectors are drawn from
the centre of a sphere along the axes of a function and of its

conjugate, the two spherical triangles the two sets of axes deter-

mine are supplemental.

Conceive the function to undergo continuous variation so

that two latent roots, g^ and g^, approach coincidence. The
corresponding axes approach and ultimately coincide, but their

plane is still determinate being perpendicular to y^. Similarly

all three axes may coincide in a line perpendicular to that in

which the three axes of the conjugate simultaneously coincide.
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We shall give an illustration of a function having three equal

roots. Let <j>a = ^, ^y8 = y, (f>y
= 0, then 0^/5 = 0, ^^a = and

generally (/y^p = 0, but (p^p and (pp are not zero. The function is

(pp = (/3S/3y/)+ ySyap) : Sa/3y, and (p^p = yS/3yp : Sa/3y— yfrp.

A totally different class of functions is characterized by the

equivalent conditions that the axes are indeterminate or that the

function satisfies a symbolic quadratic and not a cubic (compare
(vil.)). If 72 and y^ are two different axes corresponding to the

same root g^, the function c^—g^ destroys every vector in the plane

of 72 and y^, and the function is of the form

<l>p=92P+(yi-92)yi^y2y3p • ^71727^ ;

and (i>-9i)(<p-92)= ^ (x"-)

The latent cubic has two roots equal to ^g and the third equal

tO(/i.

Finally a third class may be noticed—that for which three

non-coplanar axes answer to the same root—but a function of

this kind is simply a scalar constant.

In general the latent roots may all be real, or two may be

imaginary. Corresponding to imaginary roots g2=g+ \/ — Ig'

and g^=g— \/— \g', the axes must be of the form yg= y+V— 1 y'^

and y3=y-x/^y. For {<t>-gi)[{^-g^)^{(t>'-g^)] is real and
must produce a real vector from a real vector ; but

{<t>-9i)[{^'-92)-{^-9^)'\

is imaginary and produces an imaginary vector from a real

vector.

Ex. 1. Every function coaxial with a given function
<f)

is of the form

[If Aj, ^2 and A3 are assumed to be the three roots of the function—the
only disposable constants—we find on operating by x'^+yX+z on y^, y^ and
yg, three equations which determine x^ y and 2;.]

Ex. 2. Coaxial linear functions are commutative in order of operation,

and conversely functions that are commutative are coaxial.

[The first part is easily proved on expressing an arbitrary vector in terms
of the axes. The second part is established by operating on the axes. Of
course one function may have indeterminate axes. If so, two axes of the
other must lie in their plane.]

Ex. 3. Find the latent and symbolic cubics for y\r and X-

Ex. 4. The equation

-/^ Sp<^/)>//"/o=--0, or Sp<f>pcf)^p= Oy

represents the three planes through pairs of axes of <^.
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Ex. 5. In general, if
{(f)^ +x.<f) +y)p= 0,

where x and y are scalars, and p any given vector, either p must be an axis,

and the corresponding root must satisfy the quadratic

or else p must be coplanar with a pair of axes, and the corresponding roots

must both satisfy the quadratic.

Ex. 6. Deduce the symbolic cubic from the result of replacing A, /x and
V by <f>p, ({>^p and (f>^p in the relation

pSXfjLv= XSfxvp+ fxSvXp+ vSXjxp.

Art. 67. Combining a function and its conjugate by way of

addition and subtraction we obtain two more functions,

*/o = J(0 + 0')/o and Ve/o = J(0-0O/3 (l-)

To justify the form attributed to the second function, observe

*^**
Sp('P-<p')p = (II.)

whatever vector p may be.

The function 4 is said to be self-conjugate. The conjugate of

Ve/o is — Ve/o, and the vector e has been called the spin-vector

of 9!).

The axes of a self-conjugate function are mutually rect-

angular. The function being its own conjugate, each axis must
be perpendicular to the other two. The axes of a real self-

conjugate function Tnust be real. If two are imaginary they

must be of the form y-\-\/— iy and y—V— ly' by the last

article, and the condition of perpendicularity requires

S(y+V^y)(y-V^y) =yHy2 = 0,

which cannot be, as y^ and y^ are both negative. Hence follows

the important proposition that the latent roots of a real self-

conjugate function are real.

If two roots of a real self-conjugate function are equal, it

must have indeterminate axes. For if a single axis corresponds

to the double root, it must be perpendicular to itself, and there-

fore imaginary.

Referred to the axes a self-conjugate function is of the form

<pp= -[/i^^'i^p-gj^jp-gj^^^h' • (in.)

and the only special case is when two of the roots become equal.

An arbitrary self-conjugate function involves only six con-

stants ; the three roots and three numbers to fix the directions of

the axes.

Ex. 1. The axes of Vep are € and €'±\/-l€", where e, e' and e" are
mutually rectangular, and where T€'=Tc".

[Note that (e'-Hs^ — l€")'^= 0. The imaginary axes are the vectors to the
circular points in the plane S€p= 0. See Art. 84, Ex. 8, p. 126.]
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Ex. 2. Find the self-conjugate part of the function

^p= a Sa/o+ /3'S^/9+ y'Sy/o,

and also its spin-vector.

Ex 3. If a self-conjugate function transforms a given vector a into a
given vector a', it transforms any other vector /3{= ob) into a vector,

^'(= ob') terminating on a fixed plane.

[Here Saft'= Sa'/3, and a, a and /? are given.]

Ex. 4. Given that a self-conjugate function renders a parallel to a and
/? parallel to /3', it renders y parallel to a fixed plane.

[The conditions of self-conjugation require Sf3y'Sya'Safi'—Syl3'Say'Sf3a'.]

Ex. 5. The axes of a function are mutually rectangular. It is self-

conjugate.

Ex. 6. Two axes of a function are at right angles. The spin-vector lies

in their plane.

[S7i72=0, Syj<j!)y2= = S72<^'yi= S72(<^-2€)yi, etc.]

Ex. 7. Prove that the quaternions

qi={<f>X.YfjLv+ 4>fx. YvX -f- cf)v . VA/x) : SXfiv,

g'2= (A . Y<^ix<j>v+ IX . Ycf)vcf)\+ V . Y<f)X(f)fi) : SAftv,

are invariants.

[Verify that q^ = 7n"+ 2e, q^=rf\! - 2<^e.]

Ex. 8. If the vectors a, /5 and y are mutually perpendicular,

Ya-i<^a + V^-l<^/3
-i-
Vy-i<^y = 0,

when ^ is self-conjugate.

Ex. 9. The planes containing a pair of axes of a function and the
corresponding pair of axes of its conjugate intersect in the vector (<^-^)e,
where e is the spin-vector and ;9r is a latent root.

Ex. 10. The vector to the common orthocentre of the spherical triangles

determined by the axes of a function and its conjugate is

UV€<^€.

Ex. 11. The spin-vectors of coaxial functions lie in a fixed plane.

Ex. 12. In terms of the roots and axes

2eS7i7273

=

{92 - 9z) 71^7273+ (s^s - 9i) 72^7371

+

i9i " 9^) 73^7172-

Art. 68. It happens not imfrequently to be necessary to

discriminate between the parts o£ yp^, X' ^^^ ^^ ^h® invariants

which arise from the self-conjugate part of (p and those which
depend on e. We have

yj^YXfx = V(#- Ve)X(*- V6)m

= ^VX^x- V . VeX . $M - V#XVeM+V . VeXVe/x

- '^ = ^VX/z+ XSe^/x - /xSe^X- eSeX/x,

the terms — eSX^yu+ eS/x$X cancelling.

J.Q. G
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This easily reduces to

\lrp =^p-y^ep-€Sep , (I.)

Thus the spin-vector of i/r is — $e or — (pe.

Operating by or $+ Ve we have

mp= Mp-{- Ye^/o- ^Y^ep - YeY^ep - $eSep,

and if we notice that ^Y^ep = Ye^p (Ex. 7, Art. 65), this reduces

without trouble to

m = if— Se#6 or M=m-\-S€^€ (ii.)

where M is an invariant of $. Changing (p into + c, and
therefore m into m-{-w/c+rri'c'^-{'C^, $ into #-fc and M into

M+Mc+ M'^c^+ c^, we see by (ii.) that

wf = M'-e^ or Jf' = m'+ e2 and that M"=^m'' (iii.)

Art. 69. We shall give a few examples of the geometrical

meaning of the invariants of a linear vector function. (Art. 65
(IV.).)

(1) The invariant m!' vanishes if the function (p transfovms a
pyramid into another having its edges on the corresponding

faces of the old* If the vectors a, (3, y are along the edges of a
pyramid, and if (pa is coplanar with /3 and y, 0/3 with y and a,

and (py with a and /3, it is obvious that m!' vanishes. Con-
versely if m!' vanishes we can determine an infinite number of

pyramids which transform into others having their edges on the

faces of the originals. For assuming arbitrarily a and ^, the

equations S0a/3y= O, Sa0^y = O, (i.)

determine the direction of y ; and the condition m!' = requires

Sa/30y = O.

(2) The invariant m vanishes if <p transforms a pyramid
into another having its faces through the edges of the old. The
proof and the converse are the same as that just given.

(3) The sum of the projections of vectors transformed from
mutually rectangular unit vectors on the corresponding unit
vectors is constant

:

m''=-SUa0Ua-SU^0Up-SUy0Uy if U^Uy = Ua. ...(ll.)

(4) The sum of the squares of vectors transformed from mutu-
ally rectangular unit vectors is constant

:

m'\(p'^)== -I.(<pVaf= -^SJJa(p'<p\Ja if U/3Uy = Ua ...(ill.)

where m'\(p'(p) is the first invariant of the self-conjugate function

^^
*In other words if transforms three planes into planes intersecting in pairs

on the original planes.
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(5) The sum of the squares of the projections, on any fixed line^

of vectors transformed from, mutually rectangular unit vectors

is constant If X is the vector on which the others are projected

2(SX^Ua)2= 2(SUafX)2 = T0'\2 (ly )

(6) The sum of the squares of the projections on a plane is

constant.

Similar remarks apply to vector areas Y(j)Ua(f)TJ/3, etc.

Ex. 1. If the sum of the square roots of the latent roots of <^ is zero,

it is possible to find an infinite number of pyramids (oabc) which convert
into others (oa'b'c'), so that intermediate pyramids (oa^b^cJ can be drawn
having their three edges in the faces of the first, while their faces contain
the edges of the second.

[Here S(f>^af3y= 0, S4>^f3ya=0, Bifidaft= 0, and S<^a<^^/3<^*y = 0, etc.

See the next Article and the Appendix to new edition of Elements of
Qitatermo7is, vol. ii., note v.]

Art. 70. The square root of a linear vector function may be defined as
a linear vector function, which, operating twice in succession on any vector,

produces the same effect as the given function. Writing then <^^ for the
square root of the function </>, we have, if y^, y^ and y^ are the axes of

</)^, and if h^, h^ and A3 are its roots,

1 1

<^^yj=Aiyi, {<^^fyx =Kyx= ^yx, (i.)

and consequently the axes of ^ are also axes of <^ (see Ex. 2, Art. 66), and
1

the squares of the latent roots of <^ are the roots of ^. In general, then, a
function has eight square roots answering to the double signs attributable to111 1

9\-i 92 1 9z' I^ does not follow conversely, that the axes of <^ are axes of <^

.

As an example, let </> have equal roots, and let it have indeterminate axes,

so that {'^—g\){pcyx-\-yy^= ^ where x and y are arbitrary, gx=gi being the
repeated root. A square root of the function may have three distinct111
roots -Vgx-) —gxtg^- III this case there is an infinite number of square

roots, because we may select any vector 0Gy^-\-yy^ to be an axis of ^
corresponding to +^1^, and any other vector xfy^ -^y'y^ "^^7 he selected as the

axis corresponding to -^j^. For real square roots, the three roots g^^ g^
and ^3 must of course be positive.

The following resolution of a linear function <^ and its conjugate is
,

sometimes useful—for example, in the theory of strain. It is due to Tait,

to whom is also due the conception of the square root of a linear vector
function.

Let i, jj h be the mutually rectangular axes of the self-conjugate function

<^^', and let a^, W, c^ be its roots. Eeducing <^ to the trinomial form
(Art. 62),

ct>p= aiSi'p+ bjSfp+ ckSk'p, (11.)

where i', /, ^ are to be determined, we have <f>'i=—a{', <^'j=-hj' and
^'k=—ck'. These give <f)<:f)'i= —aH.i'^-abj .Si'f -ack.Siif, but ^ is by
hypothesis an axis of <j[)^', so that <^(j>'i=aH. Consequently we must have
i'^= —1, S^y= S^T= 0, and in fact i\j\ k' form a mutually rectangular unit
system* j,of vectors. Thus in particular cf)i'=—ai, and cf)cf>i'= —a^i= +aH\
and thus it follows that ^', / and k' are the axes of the new self-conjugate
function <^'</), and that a% b^, c^ are also its roots.
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Let g' be a conical rotation which renders* ^', /, k' parallel to i, J, h. We
have by (ii.),

<^/o= '^ai^qiq'^p= ^aiSiq'^pq
;

and therefore by the definition of a square root,

<^p=^{4>4>'f.q-^pq and <f>'p
= q .(<j^4>yp.q-^ ',

(m.)

and from these we also deduce

qpq-^= 4>'.{<^^')~^p , (IV.)

In like manner we may prove that

<i>p=p-^.{<^'4>Yp.p, <j)'p=(cji'cf>y.ppp-^; (v.)

and thus we can reduce the effect of a function (^^ to a rotation preceded or

followed by the operation of a self-conjugate function.

Art. 71. We add one or two miscellaneous propositions respecting two
or more functions.

The functions (ficf), and <jf),<^ formed by taking the products of two functions

have the same symbolic cubic. For

<^/<^-<^/7=^<^/7 if </></>/7=^7j 0-)

and thus the functions have the same roots and the axes (y) of <;6,<^ are

deducible from those of cfxf)^ by operating with (/>,.

In particular <^,~i<^^, has the same symbolic cubic as cfi, and thus any
peculiarity in the nature of one function occurs also in that of the other.

Any two functions may be reduced simultaneously and generally in one
way to the forms

cf)p= aSXp+ /SSfxp+ ySvp ; <^,p= aaSA/3+ 6^S/x/)+ cyS»//o (ii.)

Assuming the possibility of the reduction, it appears that

cf>^YfjLv=acfiYfjiv= aaSXfxv, etc.,

and thus the vectors VA/x, etc., are the axes of the function ^~V/ ^^^ ^j ^> ^

are its roots. If both functions are self-conjugate, we must have

VaA-l-V/3/x-fVyi/= 0, aYaX+ bYl3p,+ cYyv= 0,

YaX^Y/3f,_Yyv ^
b — c c — a a-b '

and therefore for self-conjugate functions

<^p= ASA/o -I- /xS/Ap+ ySvp, (fi,p=aXSXp+ bfjiSfxp+ cvSvp, (iii.)

and further it is evident that

SYfxv(f>YvX= 0, SYfiv(j>JvX= 0, etc.

It is sometimes necessary to invert the function cfi -f tcfi^, and the auxiliary
t/t of this function is defined by

irYaf^= Y(cf>' + tcfi;)a{<j>' + tcf>;)/3= fYaf3+ t^Yal3+ t'^irya(3 (iv.)

where ^Ya/3= Y<f>'a<f>;/3+ Y<f>;acf,'(3 (v.)

The invariant mt is
, 7^ , 7 ^2 , ^s / \^ mt=m + lti-l,t^+ m^t^ (vi.)

* We must have i'j'k'= - 1 =ijk, but this can always be secured by attributing
proper signs to a, 6, c. If i'fk' were +1, we should not be able to rotate the
vectors into ijk, for qiq~^ . qjq~^ . qkq~^= q .ijk.q~^= - 1.
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where m and m, are the third invariants of ^ and ^, and where 2 and ^, are

the two new invariants

^Sa/3y = 2S<^a<^/?<^,7, l,SafSy= ^Scf>acl>,l3<f>,y (vii.)

Ex. 1. The locus of axes of the functions
(f)+ t<f>, where Ms a scalar

parameter is the cubic cone

[If p is an axis cfip+ t({),p=gp. The surface represents a cone, as it is inde-

pendent of Tp.]

Ex. 2. The axes of functions of the family <^+ ^<^, form co-residual triads

on the cubic cone.

[The quadric cone SXpcf)p= in which X is arbitrary cuts the cubic in the

three axes of <^ and again in three lines in which it cuts SXp<fi,p=0, as we see

by substituting <^p=xp-\-yX in the equation of the cubic. The remaining

intersection of the quadric cones is p || A. The cone ^Xp{4>+ t^)p= passes

through the axes of <^+ 1(^^ and through the three lines above mentioned, so

that these three lines are the residuals of every triad of axes (Salmon's Higher

Plane Curves, Art. 154). For other properties see Quaternion Invariants of
Linear Vector Functions, Proc. P.I.A., 1896.]

Ex. 3. Prove that the invariants I and l^ are merely multiplied by a

scalar when </> and <^, are replaced by <^i^<^2 ^^^ ^i^/<^2-

[The scalar is the product of the third invariants of <^i and ^2- ^h^^ ^^^7
general invariantal property leads to many theorems. See Phil. Trans.,

vol. 201, Part VIII., sections iii. and x.]

Ex. 4. Prove that the function ^Va/5=V</)'-ia<^/-i/3+ V<^/-ia<^'-i^ is

co-variant with <^ and <^,.

[Making the substitution of the last example, <^'~^ becomes <^/ ^<^ ^<j).

and the function ^ changes into mi-im2~^^i^<^2-]

Ex. 5. If (rl|V<^iP^2P sliow that p\\Y<j>{(r(^2^
',

and more generally if cr is connected with p by the chain of relations

Pi il V</>ip<^2pJ P2 II ^i^Spl^iPv ••• O"
II ^<hn-lpn-l<hnPn-l,

prove that an analogous chain of relations connects p with <r.

[The second part of this example is related to the theory of the

Cremona transformations connecting vectors p and cr, the direction of a

vector (p) being connected by a one-to-one relation with that of a vector (o-).]

Ex. 6. If (f>{p, t) is a linear and vector function of p and also a function

of the scalar t, the equation

Yp<l>{p,t)=

represents a cone whose order is the number of values of t which satisfy

^X4>'{X,t)4>'{<\>'{X,t\t}= 0,

X being any constant vector.

Ex. 7. The equation
V(p-a)</>(p,0= O

represents a surface which meets an arbitrary right line V(p-j8)y= in as

many points as there are values of t which satisfy

S(i8 - a)y<^(A 0Sr<^(i8, t)<i>{y, t)= S{^-a)y<f>(y, t)S(fi-a)<f>i^, t)<t>(y, t).
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EXAMPLES TO CHAPTER VIII.

Ex. 1. Find the auxiliary functions X and t/t and the invariants of the
function

<f>p
— 1,mYaYpa.

Ex. 2. Invert the function cfip+ YaYpa where <jf) is a given function and
where a is a given vector.

Ex. 3. If <f)ji=a~^Ya(f)p show that the conjugate function is

<t>Jp
= <f>'Ya-Wap,

and prove that the spin-vector is €-^Va~i^'a.

(a) Show that the auxiliary \}r function of ^^+ <^ i^ expressible in either

of the forms
^raSa-^ p+ c(Xp-Y<j>'aYa-'p) + c^p

or (V^+ cX + c2)p-V</)'a(<^'+ c)Va-V,
and show that the third invariant of the same function is

cSa~i (\/r 4- ex+ c^) a.

(b) Prove that the axes of
(f)^

are determined by substituting a root of

the equation cSa(\/r+ ex+ 6'2)a= in (cf>+ c)-^a.

Ex. 4. If
<f),p

= cf)p+ aS(3p, show that \}r^p= ylrp + Y(3(fi'Yap and that

Ex. 5. Show that the -xjr function and the third invariant of
(f)p

- Y^Yap
may be reduced to the forms

yjrp - xaS/3p - Ycj>'l3Yap+ aS/SpSafS

and m-S/3(t)Xf^+ ^/34>aSal3.

Ex. 6. li
(f>c
=

<f)+ c, etc., show that

Xc=X+ ^^) mc'=m'+ 2m"c+ 3c^, mc"= m"+ 3c.

Ex. 7. Prove that

Y.<f>Yap.f3= x'y.yap.l3-Y.Yap.cl,(3.

(a) Show that the conjugate of this linear function of p is V . (f>'Yf3p . a,

and prove that the spin-vector is ^<f>'Ya/3-aSef3 M^here € is the spin -vector
of (^.

(6) Show that the auxiliary -xj/- function is aS^/oSax/r^.

(c) If Y .cj>Yap. /3=cr, show that p=xa-(j)'(T{Sa\lr(3)~^ where x is an
arbitrary scalar. Deduce this result by the aid of the implied relations

Sap<^'o-=0, S/?(r=0.

Ex. 8. Prove that

V .</)(/))= - SV^y . </>a(Sa/?7)-i

where a, /? and y are arbitrary vectors.

(a) Show that
V . V-(p)= - 2a . V<^'^fy . (Sa/^y)-i.

(b) Express these quaternions in terms of the scalar invariants and the
spin-vectors.
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Ex. 9. Three lines are defined by the pairs of vectors (o-j, t^), (o-g, T2),

(0-3, Tg) as- in Art. 36, Ex. 4, show that any line which is met by all the

transversals of the given lines may be represented by

(T= <fiT where St<^t= 0,

the linear function <^ being defined by the equations

O-j = <j>Ti, 0-2= <^'''2) ^3= ^'''3'

(a) The transversals of the same set of lines may be represented by

cr'= — <^'t' where St'<^'t'= 0,

the function
<f>'

being the conjugate of
<f).

(b) Writing

and expressing that the function </>( )- Vp( ) has a zero root, the locus of

the lines is found to be

S(p-e)<f>(p-e)= m-hSe<fi€

where m is the third invariant of the function <^ and where e is its spin-

vector.

(c) The same equation is satisfied by the transversals.

(d) Show that four given lines have in general two common transversals

;

and that these are determined by

o-'=— <^'t' where Sr' (o"4

-

^T4)= 0, St(^'t'= 0,

the fourth line being defined by (0-4, T4).

Ex. 10. Given any four- pairs of vectors, (/?„, a„), where n = l, 2, 3' or 4,

show how to find a linear vector function cf) and a vector y so that
.

/3„ = (/)a„ + y.

Ex. 11. Given any six triads of vectors (y„, /3„, a„) where 71= 1, 2, ... 6 ;

determine two linear functions ^^ and ^2 ^^ that

Ex. 12. Verify by assuming p= .m +.?//?, SAa=0, SA/3=0, that the

solutions of the equations SAp= 0, Sp<f)p = 6 may be written in the form

/3= V<^aA±a(SAfA)i

where a is any vector perpendicular to A.

Ex. 13. Given two tetrahedra a'b'c'd' and abcd, find a point e and a

function <^ so that

EA'= cf) . EA, EB'= cf) . EB, EC'= cf). EC, ED'= cf> . ED.

(a) Show that corresponding faces of the tetrahedron determine with the

point E tetrahedra having a common ratio of volumes.

(b) If the lines joining corresponding vertices are generators of the same
system of a hyperboloid, it is possible to find four scalars I, m^ n, p so that

'>
l{a' -a)+ m(l3' - l3) + 7i('/ -y)-hp(8' -S)= ;

IVaa +mYl3l3' + nYyy' +p8S'==0.
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(c) These scalars are independent of the origin, and if the origin is taken
at the point e, we shall have

la + m/3+ny+p8= 0, la +771/3'+nY+ p8'=

for an arbitrary pair of tetrahedra, while if the lines joining the vertices are
generators of the same system of a hyperboloid, we shall have in addition

lYaa'+ mY/3(3'+ 7iVyy'+ pY88'= 0.

Ex. 14. Identify the expressions

where ^ is a scalar variable, and show how to express the function <^, and
the vectors A and /x in terms of the vectors a, ^, y and S, and the scalars

a, h, c and d.

Ex. 15. Of what nature are the curve loci

p= {cfi + t)-\a + t/3) and p = (<fi-{-t){a+ tf3)-^'i

Ex. 16. Gauss has described, in an unpublished ms. of the year 1819, an
operator which alters the size of any figure in a given ratio, and which turns
the figure through a given angle round a given line through the origin.

He proves that an operator of this kind depends on four numbers, that
successive operators compound into a single operator of the same kind, and
that the order of the operations is not conmiutative.

(a) Show that Gauss's operator may be expressed in quaternions by
cq{ )q~^, c being a given scalar, and q a given quaternion.

(6) Hence prove his theorems.

(c) Compare and contrast the lack of commutation in the order of these

operators, or in the order of the operators 2 and cos. in the simple inequality

cos 2,^'^ 2 cos X,

with the lack of commutation in the multiplication of quaternions.

{d) Prove that the sum of two Gaussian operators is an operator of a
distinct kind.

{e) Prove that a sum of at least three Gaussian operators is required to

adequately express a linear vector function. (Bishop Law's Premium, 1899.)

Ex. 17. Unit vectors a, /5 and y are directed respectively from the centre

of a regular solid to the middle point of a face (or to a vertex) ; to the middle
point of an edge of the face (or of an edge through the vertex) ; and to a
vertex on that edge (or to the middle point of a face containing the edge),

prove that 4 2

where n— Z for the tetrahedron, 7Z = 4 for the cube and octahedron, and n= b

for the dodecahedron and ikosahedron.

{a) Hence show that all rotations which leave unchanged the region

occupied by the solid may be represented by powers and products of linear

vector functions A, k and i which obey the laws *

A«= l, k3= 1, fc2=l, A= iK, (7i= 3, 4or5).

* See Hamilton on the Icosian Calculus, Phil. Mag., Dec. 1856; Proc. R.I. A.
Vol. VI., pp. 415, 416. See also Burnside's Theory ^Groups, Arts. 200, et seq.
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Ex. 18. A real linear function which is a symbolical n^^ root of unity, or

which satisfies the equation
</)"= !

is of the form

cfip . Sa^y= (^acos^ - ^sin—^ j S/3yp

+ ( a sin— + ^ cos - j Syap + ySa/Sp,

where a, ^ and y are arbitrary real vectors.

Ex. 19. The result of eliminating the vector tTT between the equations

St7a = 0, STJ<f>p= 0, SC7<^CT=

may, when (/> is self-conjugate, be expressed in the form

Sa\l/aSpcf)p - mSa/)2= 0.

(a) In the same case,

S(f)paV . Ya(j>p= YacfiYacfip= pSaxfra — i/^aSap.

(b) And moreover *

S<^paAS<^pa/x= S/x^pSVaA^Vaju,-}- SA"0-/xSa/)2 — Sayj/^pSXpSap — SaxfrXSppSap

+ Sa^aSXpSpp.

^ These examples are quaternion equivalents of the transformations in Arts.

383, 385 and 390 of Salmon's Higher Plane Curves.



CHAPTER IX.

QUADRIC SURFACES.

Art. 72. If f{p, p) is a homogeneous, rational and integral

scalar function of the second order in a variable vector p, so that

/(a+ i/3, a+ t^)=f(a, a)+ t(f{a, /8)+/(;8, a))+m^, /S), ...(l.)

where a and /3 are arbitrary vectors, the equation

/(/o,/o) = const (II.)

represents a surface of the second order, referred to its centre as

origin. For by (i.) we find a quadratic in t which determines

two points in which an arbitrary line p = a-\-t^ cuts the surface

;

and on putting a = 0, the roots of the quadratic are equal and
opposite, showing that every chord through the origin is bisected

at that point.

The coeflScient of t in (i.) is linear and homogeneous both in a

and in /3, and as it involves these vectors symmetrically we may
write

f(a,^)+f{/3, a)= 2Sa^/3= 2S^95>a (ill.)

where is a self-conjugate linear vector function. Thus the

equation of the central quadric is expressible in the form

f(p, p)= Sp^yo = const (IV.)

Without loss of generality we may suppose the constant incor-

porated in <p, and we take as the equation

8pcl>p=-l, (V.)

in which, as we have said, (p is self-conjugate. Of course, and
without gain of generality, we may suppose ^ not to be self-

conjugate in (v.), for the spin-vector automatically disappears

from an equation of this form (Art. 67) ; but this is very likely

to l«ad to mistakes in further developments, and it adds needless

complexity.
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Art. 73. Equation (v.) of the last article gives

VSUyQ0UyO=-l or -SUyO^Up =^2=^ W
if r is the length of the central radius parallel to JJp.

For a closed quadric, an ellipsoid or sphere, r^ is always
positive, as every line through the centre meets the closed

surface in real points. For a hyperboloid, the radius becomes
infinite for an edge of the cone

SVp(f>Vp = or Sp(l>p = 0, (II.)

the asymptotic cone of the surface. The sign of the expression

r~2 or —SJJpcpUp changes on passing through a zero value, and
the expression remains with changed sign until it passes again

through a zero value. So on one side of the cone Sp^/o = 0, lines

meet the hyperboloid in real points, and on the other side the

points are imaginary and the corresponding vectors are of the

form p = ij— lp\ (Uyo = Uyo', Tp^fJ— ITp), where p is a real

vector.

The vectors p terminate on the quadric

Sp(t>p= +1 (III.)

—the conjugate of the quadric Spcpp— —1.
For the sake of brevity we shall write generally r- for the

square of the length of the radius whether that square be
positive or negative, the interpretation in the latter case being
that just given.

An arbitrary right line p — a+ t^ cuts the quadric Sp(pp= —1
in the points determined by the roots t of the quadratic

Sa<l>a-^2tSa(p/3+ r'S/3<pi3= -1 (IV.)

For a real and positive root, the point is in the direction +U^
from the extremity of a, and for a negative root it is in the
direction — U/3. For equal roots, the line touches the surface;
and for imaginary it cuts it in imaginary points.

The locus of the middle points of chords parallel to ^ is the
diametral plane

Spcl>/3 = 0, (v.)

for if a is the vector to any point in this plane, the roots of (iv.)

are equal and opposite. If the diametral plane of jS contains the
vector a, that of a contains /5 in virtue of the self-conjugate
property of 0, for then

Sa95>/3 = S/3^a= (VI.)

T^^ equation has equal roots if

Sfi<p/3{Sa<pa-{-l)-(Sa(P^f= 0, (VII.)
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and regarding /3 as variable, this is the equation of the tangent
cone from the extremity of the vector a referred to that

extremity as origin, for it is independent of T/3. Replacing

,8 by yo — a, the equation of the same cone referred to the centre

as origin easily reduces to

(Syo0/o+ l)(Sa0a+ l)-(Syo0a+ iy'^ = O; (VIII.)

and the form of the equation shows that the cone touches the

quadric along its intersection with the plane

Sy30a=— 1 (ix.)

—the polar plane of the extremity of a.

If the vector a terminates on the surface, the equation of the
cone becomes the square of the equation of a plane—the tangent
plane at the extremity of a,

Sp^a= —1, Sa(pa= —1 (x.)

Allowing on the other hand a to vary arbitrarily in the quad-
ratic equation, and putting for greater clearness a = p — p — t^,

the vector p being drawn from the extremity of the vector t^
while p is drawn from the centre, we see that

Sp<pp=-l-t^Sp(pp if Sp>/3= (XI.)

These two equations jointly represent the section of the quadric

by the plane Syo0/5 = 2^S/30/3, (xii.)

and the centre of the section is the origin of vectors p\ or the

extremity of the vector t/3. Hence the locus of centres of

sections by planes parallel to (v.) is the line through the centre

parallel to 8, as indeed might have been proved directly from (v.).

The section (xi.) is similar to the parallel central section of the

quadric, for if r' is the radius of the section parallel to p' and r

that of the quadric,

-/2SUp>U/>' =5= l+«2S;8^/3 =l-M.' (XIII.)

if h' is the radius of the quadric parallel to /?.

The equation of the normal to the quadric at the extremity of

the vector a is

p = a+ X(pa, or Y{p — a)(j)a= 0; (xiv.)

and the normals which pass through a given point /3 are six in

number and are determined by the equation

^= p + X(pp, or \{^-p)(f>p = 0, and S/o^yQ= -1. ...(xv.)

To solve these equations we have

^ = (l + ic0)-i/3, where S^0(l+cc0)-2^= -1, (xvi.)

because ^pcpp = — 1 , and on inversion we find a sextic equation

n X.
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Ex. 1. Prove that the rectangle under the intercepts from the extremity

of a on the line p= a+ tB is

(Ta2-a'2)fe'2a'-2

where a' and b' are the central radii parallel to a and (3.

[t^t^TI3'= (Sacl>a+l) : SU^<^U/?.]

Ex. 2. The ratio of the rectangles un^er the intercepts of lines drawn
from a fixed point is independent of the position of the point, and is equal to

the ratio of the squares of parallel central radii.

Ex. 3. Chords drawn through a point are divided harmonically by the

quadric and the polar plane of the point.

[Put = -i+ -;| where L and U are the roots of the quadratic (iv.).]
p-a 13 ^

Ex. 4. Find the central vector perpendicular on the tangent plane at

any point, and obtain the locus of the feet of central perpendiculars, or the

central pedal surface.

[CT=-(<^a)-i; a=-cf>-^To-'; SC]r-i<^-icy-i= - 1.]

Ex. 5. Prove that the central pedal surface is the inverse of the reciprocal

quadric.

Ex. 6. Prove that the ratio of the perpendiculars from a point a and
from the centre on the polar plane of b is equal to the ratio of the perpen-

diculars from B, and from the centre on the polar plane of a.

Ex. 7. Find the locus of the poles of tangent planes to the surface

S/o(/)i/o= - 1 with respect to the surface S/o<^2P= ~ 1-

Ex. 8. Find the pedal surface for an arbitrary point.

Ex. 9. The feet of the normals which pass through a given point are the

intersections of a twisted cubic with the quadric.

[Compare (xv.) and Art. 65, Ex. 8, p. 93.]

Ex. 10. The normals through a given point lie on a quadric cone

S{p- I3)(f)l34>p=^, and the feet of the normals lie on the cone S^pcf>p= 0.

(a) Both these cones have edges parallel to the three axes.

Ex. 11. Find the condition of the intersection of normals at two points

a and /?.

Ex. 12. Find the equation of the polar plane of a to the quadric

Sp(f>i(f)2P= - Ij <^i^2 being the product of two linear functions.

[Note that <ji2 4>i ^^ *^^ conjugate of <^i<^2-]

Ex. 13. Prove that the polar line of p= a-\-t(3 with respect to the

quadric S/)(^/3= — 1 is

_4>(3+ s

Art. 74. The central plane SXp = is the diametral plane of

chords parallel to ^"^X, as appears on comparison with (v.) of the

last article. The locus of the centres of sections by planes

parallel to SXp = is the right line

Vp^-iX-0 (I.)

\
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The vector to the pole of the plane (Art. 73 (ix.))

SXp=-l is (jy-'^X; ....(II.)

and the plane touches the quadric if (Art. 73 (x.))

SX^-'^X^-l, (III.)

and as .\ varies this is the tangential equation of the quadric.

But SX/o=— 1 is the polar* plane of the extremity of X with
respect to the unit sphere, T^=l or p^=z —1, and the equation

(ill.) may therefore be regarded as that of the reciprocal of the

quadric with respect to the unit sphere.

The vector to the centre of the section by SXp= — 1 is by (i.) .

0-^X / X

-sx^v <'^->

the tensor being determined so that this vector may terminate in

the plane SXp = — 1 ; and on comparison with (xiii.) of the last

article, the ratio of the radii is given by

r'^ 1+SX^-iX
r^~ SX0-1X * •-'

Ex. 1. By direct comparison of SA/)+l = with (xii.) of the last article,

find the vector (iv.) of the present.

Ex. 2. Find the reciprocal of the surface with respect to an arbitrary

sphere.

Ex. 3. Find the lines in which the plane S\p= cuts the cone Sp^p= ;

and show that they are parallel to

YX<f^a±a(SXf\y

where a is an arbitrary vector in the plane.

[Assume the lines to be a+ ta where Vaa'= A and actually solve for t on
substitution in the equation of the cone.]

Ex. 4. Prove that the tangent of the angle between the lines in which
the plane SA.p= cuts the cone Sp<f)p= is

tan u^2—X. \ •

SAxA

[If a+ ztja and a+ ^2<^' are the lines, calculate a- + (ti + t2)Saa+tit2a'^ and
{ti-t2)yaa'.]

Ex. 5. Show that the lines in which the plane SA/o = cuts the cone

Sp<^p= are parallel to the vectors

VA[yV^AA ± <^A(SAV^Af]

.

Art. 75. The vector radii a and /3 of the quadric are con-

jugate if 8a<pl3 = 0, (I.)

that is if one lies in the diametral plane of the other (Art. 73

(VI.) ) ; and it follows geometrically, or directly from the equations

of the tangent planes

S/30a=-l, Syo0/3=:-l; Sa0a=-1, S/3^/3=-l, (ll.)
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at the extremities of these vectors, that each vector is parallel to

the tangent plane corresponding to the other.

If the vectors are perpendicular as well as conjugate, they are

the principal axes of the section by their plane, and the condi-

tions are S^^^^Sa/3 = (III.)

From these we see that

/3 II Va0a, a\\Y/3<p^; (iv.)

so that if one vector is given, the other is determinate ; or given

that a line is to be the principal axis of a section, the other prin-

cipal axis is determined by (iv.), and the normal to the section is

parallel to

Ya/B
II
aYacpa \\ (pa . a^-aSa^a || (paTa^-a (V.)

Thus to determine the principal axes in a central plane S\p = 0,

we have

I;
0aTa2_a||X or aU<l>Ta^-l)-^\] (VI.)

and because SXa = 0, we have if Ta^= r^,

SX(0r2-l)-iX = O or r'SXxl^\-r^S\x\+ \^ = (vii.)

using the formula of inversion (Art. 65). Thus a quadratic in 7^^

is obtained and substitution of its roots in {(pr^— iy^X gives the

directions of the vectors required.

The principal axes of a surface are normal to the tangent

planes at their extremities, so that

Yp(l)p= (vm.)

for a principal axis. These are the axes y^, y^, y^ of the

function (p.

Ex. 1. Find the maximum and minimum radii in a central section.

[Here SA/)= 0, Spcf>p= —I, Tp= max., and on differentiation, SXdp= 0,

S(f>pdp= 0, S/)d/)= 0, so that the three vectors A, cf^p and p are coplanar, or
{<^-\-x)p=yX. Operating by Sp, we fall back on (vi.).

Ex. 2. Find the maximum and minimum radii of the quadric, and show
that their directions are the solutions of

Yp<f)p= 0.

Ex. 3. The sections by planes perpendicular to X are rectangular
hyperbolas if

SAxA= 0.

Ex. 4. The equations (iv.) fail in one case.

[Where the vector a is a principal axis of the surface.]

Ex. 5. In general, the three radii are coplanar which are axes of sections

having any three mutually rectangular radii as the remaining axes.

[Because <p is self-conjugate, Va~^<^a+ V/5~^^)8-l-Vy"^0y = O if a, /? and y
are mutually perpendicular (Art. 67, Ex. 8, p. 97).]
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Ex. 6. The sum of the squares of the reciprocals of three mutually
rectangular radii is constant.

Ex. 7. Interpret geometrically the equation

which asserts that the plane SA/o= cuts the quadric in a section having a
principal axis equal to r.

[This expresses that the plane touches a certain cone.]

Ex. 8. Central planes cut a quadric in sections of given area A . Prove
that their envelope is the cone

Ex. 9. The axes of the section by the plane SA/)+l = are the roots of

the quadratic

Ex. 10. The area of the section made by the plane SAp + 1 = is

. TA(m+ SAfA)

(-SAfA)^

Art. 76. From any pair of conjugate radii a and ^ we can
derive a third radius conjugate to both so that

S/3^y = Sy0a = Sa^/3= O (l.)

We may in fact regard the two conditions in y as equations of

planes, and

y !1 V^a0/3 II
i^Va/5

||
^'Wa^ (ll.)

With proper tensor the radius y is

'^"V(-SVa/9^-iVa^) ^™-^

In terms of the three mutually conjugate radii, the equation

of the quadric is

(S/3yp)2+ (Syap)H(Sa/3/>)2 = (Sa/3y)2 (iV.)

as appears on substituting p = ]SaS/3y/o : SajSy in Sp(pp = — 1 and
attending to the conditions.

Writing (compare Art. 70)

a= <f>-^a, ^ = ^~^/3:, y^fS' (v.)

it appears by (i.) that the vectors a\ /3' and y are mutually
perpendicular, and because a, 13 and y terminate upon the

surface Sp<f)p= —1, it further appears that a, /3' and y are

unit vectors. The theorems of Art. 69 therefore apply, the

vectors a, /3 and y being the results of operating by a linear
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function ((p~^) on three mutually rectangular unit vectors.

Thus the sum of the squares of three mutually conjugate radii

is constant, etc.

Ex. 1. The radii a, /?, y being mutually conjugate, prove that

^«=-s^' ^^=-s^' ^^=-s^'
and that

= Ta2+ T^2+ T72; ^= TV/3y2+TVya2+TVa^; m= (Sa^y)-2.^=TaHT^^+T/; ^

I

Ex. 2. The locus of the extremity of the diagonal of a parallelepiped

having three mutually conjugate radii as conterminous sides is

Sp<^p4-3 = 0.

Ex. 3. The locus of the mean point of a triangle formed by the

extremities of mutually conjugate radii is

Ex. 4. The locus of a point from which it is possible to draw three

tangents parallel to mutually conjugate radii is

Ex. 5. In the last example show that a point on the locus is

and that the points of contact are the extremities of

^(/3+ y), i(7H-a), ^-(a+ IB).

Art. 77. To find the cyclic planes of a quadric we have to

throw its equation into the form

Sp<l>p=gp^+ 2SXpSiixp= -1 (i.)

or to determine g, X and /x so that for all vectors p,

^p=gp+ XSyOtp+ yuSXyO (II.)

It follows that
(l>
— g must reduce every vector to a fixed plane,

that of X and ju. The scalar g must therefore be one of the

latent roots of 0, say g=g2, and in terms of the axes,

M^-92)P= -(gi-92K^^py-(9z-92)(^kpy = ^^^p^f^p (ra)

because (pp= — ig^Sip —jg<^jp— kg^Skp.

Thus
' -^

t\ = Jg^- g^i+ Jg^- gjc, 2^ "V = V^g" 9^^" "^93" 92^ (l^-)

J.Q. H
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where t is arbitrary. The transformation is real only if

yi>92>93 or gC>92>9i (^^O

The cyclic planes SXyo = 0, SjULp = cut the surface in circles of

radius (73, ^^^ these circles are real only if f/g^O.

The planes S\p-\-l = 0, S/A/3+m = cut the surface in circles

lying on the sphere

Sp(Pp-\-l-2(S\p-\-l)(Siixp+m) = 0,

or gp^-2Sp(lfjL +m\)-2lm+ l=0.

In nearly every problem relating to quadrics some valuable

information will be gained by throwing the equation into the

cyclic form or into the focal form of the next article. This

transformation is not generally of any great difficulty.

Ex. 1. Reduce a quadric to the form

T(p-ay = e{Skp + l)(Sfxp+ l).

[This gives Dr. Salmon's focal property. The locus of the extremity of

the vector a is a hyperbola—the focal hyperbola, and this depends on

equation (iv.).]

Ex. 2. Prove that the roots for Hamilton's cyclic form are

g, g+ SXfji + TXfji, ^ + SA/x-TA/z.

Ex. 3. Any two circular sections of opposite systems lie on the same
sphere.

Ex. 4. If a quadric is a surface of revolution,

for all vectors p.

[The self-conjugate function <^ has two equal roots (c) and (Art. 66 (xii.),

p. 95)
V((^-c)a((/)-c)^

is identically zero for all vectors a and /3, or yjrp-cXp+ c^p— 0.]

Ex. 5. If for all vectors p

SpXpi^p= 0, or Sp(j)p(ly^p= 0, or Spcf>p^p= 0,

the quadric is of revolution.

Ex. 6. From a fixed point a, on the surface of a given sphere, draw any
chord AD ; let d' be the second point of intersection of the same spheric

surface with the secant bd drawn from a fixed external point b ; and take

a radius vector ae, equal in length to the line bd', and in direction either

coincident with, or opposite to, the chord ad : the locus of the point e
will be an ellipsoid, with a for its centre, and with b for a point of its

surface.

[^Elements of Quaternions^ Art. 217 (6). See also Lectures, Art. 465. If c

is the centre of the sphere, the isosceles triangle acd gives —=K— , or

CD= - AD~^ . CA . AD= - AE'^ . CA . AE, and therefore

DB= CB+ AE~1.CA. AE= t+p-lKp
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if CB= 6, AE = p, CA= K. By the property of the sphere d'b . db= cb^-ca^ = k^- t^,

and by the construction T> = TD'B= T(t2 - k^) . Tdb-i, or T(pt + Kp)= T{i^ - k^).

Squaring both sides, we have Tp^T{i^+ k^) + 2SplKkp= T(l^ - k^^, which
reduces immediately to Hamilton's cyclic form.]

Ex. 7. Conceive two equal spheres to slide within two cylinders of

revolution, whose axes intersect each other, in such a manner that the right

line joining the centres of the spheres shall be parallel to a fixed right line
;

then the locus of the varying circle in which the two spheres intersect each

other will be an ellipsoid, inscribed at once in both the cylinders.

[Hamilton, Lectures, Art. 496. Taking the spheres to be T(p-ta)= b,

T(p-tB)= b, where a, /S and b are given and where ^ is a variaole scalar,

we find on elimination of t,

(p2+ 62)(a-2 - /3-^)(a2 - f3')
= 2S(a-i - f3-')pS{a - fS)p.]

Art. 78. To find the right circular tangent cylinders of a

quadric, observe that if the vertex of the tangent cone (Art 7S

(viii.)) passes off to infinity, the equation of the tangent cylinder

parallel to a is

(Sp^p+ l)Sa^a-(S^0a)2= O (l.)

A right circular cylinder parallel to a and of radius Ta~^ is

represented by
TVap = l, or (Vapf+ 1 = 0, .: (ll.)

and identifying this with (i.) we have to satisfy

Sp^pJ^if+ i^apf (III.)

for all vectors p, or what is equivalent we must identify

0aS^_
^^^y

This is identical for p = a; and for p = ^a we have

,2 <paSa(f)^a , o
i a ^ /tt \0«= ci—r 6a . a^ -\- a^a(i)a (V.)

Here then is a linear relation connecting the vectors <p^a, ^a
and a, and it follows (Art. 66) that a must be coplanar with a
pair of axes, i and k suppose, and that (say)

This gives on comparison with (v.)

Sa^a^—g^g-^, Sa<p^a = (g^-{'gi+ a^)Sa(f)a, Saj = 0, ...(VI.)

and putting p=j in the identity (iv.), we find

-"'s
a'^^-g, (vii.)

The identity is now satisfied for three non-coplanar vectors,
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j, a and cjya and therefore for all vectors ; and if lJ/3 = U^a, the

equation of the quadric is by (iii.) reduced to

Sp0p= 6(SpU^)2+ a(VpUa)2= -1, (VIII.)

where a=g^, i>=92-9i-9z^

which is Hamilton's focal form, if we remark that by (vi.)

and (vii.)

7 T(0a)" Sa(h^a
0= Q . = -1^^=92- 9i-9z-

If a = ix-\-kz we have by (vi.) and (vii.)

x^-\-z^=g^, 9iX^-\-9b^^==939v

and a^iJd^l^+jJ^MEM (IX.)

Art. 79. To find the generators of a quadric, we express

that when we substitute p+ ta in its equation, the equation is

satisfied for all values of t Thus

Sp<pp = — 1 , Sp(pa = 0, Sa0a = (l.)

From the second and third of these

Yap = X(pa, or p = Xa~'^(pa-{-ya, (n.)

and substituting for p in the equation of the quadric,

- 1 = iC^SVa - ^(pacpYa "^^ = x^mSYa " ^(paYcp -'^a-'^a

= x^m(Sa-'^aS(pa(/>-'^a-^-Sa-^(j>-^a-'^Sa<pa),

or simply cc^m= — 1. Thus the equation of the generator is

P=±^l-'-'a-^ct>a^-ya, (ill.)

it being implied by the form of this equation that Sa"-^0a = O.

Generators of one system correspond to the sign +, and those

of the other system to the sign —

.

Ex. 1. Prove that generators of opposite systems intersect.

Ex. 2. Find the locus of the feet of central perpendiculars on the
generators.

[From the equation p= ± a/ a~i(^a we find a 1| yp<t>p, and substitution

in Sa<f>a= gives a quartic cone which intersects the quadric along the
locus.]

Ex. 3. Prove that the locus of intersections of generators which cut at

right angles is the intersection of a sphere with the quadric.

[Note that a central plane parallel to a tangent plane cuts the asymptotic
cone in lines parallel to the generators.]

I
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Ex. 4. The locus of intersections of generators which cut at a given
angle is

tanw=2^^^—^; Spcf,p+ l=0.

[See Ex. 4, Ai-t. 74.]

Art. 80. When the equation of a quadric is given in the form

Sp0/,-2S€pH-^ = O, (I.)

in order to find its centre, or centres, we may replace the

equation by

S(/Q-ft))95)(yo~ft))+ 2S(/o-w)(0ft)-e)+ Sft)0a)-2Seft)+ ^ = O, ...(ll.)

and if w terminates at a centre the part linear in p— w vanishes,

and o) is a solution of the equation

<p(jO = € (ill.)

Operating by yjr we have

m(jo = \l/-e, (iv.)

and the vector to the centre is finite and determinate if m is not
zero. If m is zero and ^e not zero, the centre is at infinity in

the direction of xfye, and the surface is a paraboloid. If y/re is

zero, m must also vanish, and the solution is (Art. 65)

m'rt) = x^+ V^^' i/^e= 0, (v.)

and the surface has a line locus of centres and is a cylinder,

\l/w being parallel to the axis of
(f>

corresponding to its zero root,

and the length of ^w being indeterminate. If m vanishes,

the function \/r vanishes identically since cp is self-conjugate

(Art. 67), and in fact is of the form —aiSip. If x^ is not
zero, the line of centres is at infinity since (v.) can only
be satisfied for infinite values of oo. If however x^~^' ^^^

solutionis m"o. = e+ xa), x^ = ^. •• (vi-)

and the surface is a pair of parallel planes. More simply when

(j)(jo= — aiSico = € and x^ = ae+ aiSie = 0,

equation (ill.) becomes aSiw = Sie.

In the case of the paraboloid, equation (v.) without the
condition xj/^e = 0, or

m'w = xe+ uk, \jre\\k, (pk = .....(vil.)

is the equation of the axis, remembering that \/yot) || k — uk where
u is an indeterminate scalar. We have in fact on operating

by (p, on\<p(jo— e)=— i/^e, and the term linear in p— co is propor-

tional 'to Sk{p— (ji)). In like manner it may be shown that (vi.)

without the condition x^ = ^ represents the axial plane of a
parabolic cylinder.
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Art. 81. We propose in this article to give a short account
of the cone of the second degree and of sphero-conics. (See

Elements of Quaternions, Art. 196.)

The equations /^^
Sap+ 1=0, 8^^-1 = (I.)

represent respectively a plane and a sphere which passes

through the origin of vectors. Combining these equations so as

to eliminate Tyo, the equation

SapS^+ l = 0, or SayoS/3yo+ p' = 0, or S/3/)S"+ l = 0, ...(ll.)

P P

represents the cone whose vertex is the origin and which passes

through the circle of intersection of the plane and sphere.

The third form of the equation shows that the cone passes

through a second circle, the circle common to the plane and
sphere n^

S^yO+ l=0, S-~1=0, (III.)

and thus exhibits the theorem of Apollonius that an oblique

cone having a circular base has a second series of circular

sections.

The second form of the equation shows that the product of

the cosines of the angles between an edge of the cone and the

cyclic normals (Ua and U^) is constant, for this is

SJJ,apSlJ./3p= Ta-'l3-^; (IV.)

or what is equivalent, if the cone is cut by a sphere concentric

with the vertex, the product of the sines of the arcual perpen-
diculars let fall from any point of the sphero-conic of intersection

on the two cyclic arcs (the great circles in the planes Sap = 0,

S/3p = 0) is constant.

If Up and IJyo' are the vectors to any two points P and P' on
the sphero-conic, and if the great circle PP' cuts the cyclic arcs

in Q and Q', it follows from the second of equations (ii.) that

U(UyoSaUyo'— Uyo'SaUyo) is the vector to one of the points (Q)
and that JJ(UpSaUp — Vp'SaUp) is the vector to the second
point (Q'), Q being in the cyclic plane Sap = and Q' in S/Sp = 0.

Hence, from the form of the expressions for the vectors to these

points, we learn that the arc PQ is equal to the arc P'Q'.

If P' and P" are two fixed points on the sphero-conic, and if P
is a variable point likewise on the conic ; if the arcs PP' and PP"'

cut one cyclic arc {Sap = 0) in Q' and Q", the length of the arc
Q'Q'' is constant. This follows most easily by producing the
radii of the points P, P' and P" to meet the plane Sa/o+ l=0
of equation (i.) in the points P^, P^' and P/. It is evident that OQ'

and OQ" are respectively parallel to P^P^' and PqPq', and more-
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over the angle P^'P^P/ is constant since it is the angle subtended
at a point on the circumference of a circle by two fixed points

likewise on the circumference.

Given the cyclic arcs of a sphero-conic and a point on the

conic, the conic is determined by elimination of t from the

equations

the vector y terminating at the given point, and for convenience

the radius of the containing sphere being taken equal to unity.

The three propositions just proved are used by Hamilton to

establish the associative principle of multiplication of quaternions.

In the figure the great circles GLIM, CHBG, DAEC are the traces

of the planes of three versors

_0L _0H _0C
^~0G' '^~0C' ^"OE*

M I

Fig. 25.

Constructing the product rs = OH : OE, the point H is deter-

mined and the sphero-conic HKBF is drawn through the point H
having GLIM and DAEC for cyclic planes. Producing the arcs

GH and EH, the points B, G, F and I are constructed. The point

L is joined to B and LB is produced to K and A. The arc FK
is drawn and produced to M and D. It follows then that the

arcs GL and IM are equal and also the arcs CE and AD, and
moreover FM = DK and AK = BL by the properties of the sphero-

conic.

We have therefore

_ 0H_ OI_OM OI_OM_OK_OK OA
^'^''^~^*OE~^*OF~OI'OF~OF~OD~OA'0©

OK OL OL OG
= OA"^ = OB-^ = OG-OB-^ = ^^-^-

By proving the properties of the sphero-conic without employ-

ing the associative principle, this principle is established since

we can show that for any three quaternions q .rs= qr.s.

In Addition to the properties just proved for the sphero-conic, it is easy

to see that great circle arcs which intersect at a point on the curve include

supplemental arcs (such as ca and gl, Fig. 25) between the points in which
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they cut the cyclic arcs. Reciprocating these properties, the cyclic arcs

become the foci e and f (Fig. 26) of the reciprocal sphero-conic, and if the
two foci and one tangent arc ab are given, the conic can be constructed. If

from any point on the sphere, two tangent arcs are drawn to the curve and
also two focal arcs to the foci, then one focal arc makes with one tangent
the same angle as the other focal arc makes with the other tangent. More-
over opposite arcs of a spherical quadrilateral, abcd, circumscribing the
conic subtend supplemental angles at the foci.

Fig. 26.

From these properties Hamilton deduces the associative principle. The
versors q and r are represented by the directed angles bae and eba, and their

product qr is (Art. 30, Ex. 5, p. 30) represented by the external angle at e
or by the equal angle ced. A third versor 8 is represented by dce, and the
external angle of the triangle dec represents the product qr . & (namely,
qr into s). Making fcb and cbf respectively equal to the angles of s and
of r, the point f is found ; and when the sphero-conic having e and f for

foci and ab for tangent is constructed, it follows that bc and cd are also

tangents on account of the equality of the angles marked r and of the angles
marked s. Again, because ced was constructed equal to the supplement of

aeb, the arc da will be a tangent to the curve, and fad will be equal to the
angle of g, and dfa will be supplementary to cfb. Hence fad and dfa
represent respectively q and rs, and the external angle of the triangle adf
represents the product q . r8. But the angle between da and df is equal to

the angle between dc and df, and therefore q.rs= qr.s.

To find the locus of a point on the surface of a unit sphere,

the sum of vjhose arcual distances from two fixed points, E and
F, is constant, we have in the first place for the cosine of the
sum of the arcs,

SU.eyoSU;;p-TVU.eyoTVU.;;p = COSa; (V.)

or on rationalization, we find the locus to be a sphero-conic,

(SU . eyo)'^+(SU . rjpf- 2 cos a SU . e/>Sl% = sin^a ; (vi.)

since (SU. eyo)2+(TVU. e/o)-= 1. (Compare Elements of Qua-
ternions, Art. 360.)

This may also be written in the form

S(Ue— cos(xU?;)yo= ±sm.aTWjrip, (vil.)
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so that the sine of the arc between a point and a focus is propor-

tional to the sine of the perpendicular on a directrix arc.

Many interesting examples and illustrations will be found in

the ElementSy Book II., Chap. III., Sections 1 and 2, and in

Art. 306, and also in the sixth of the Lectures on Quaternions.

Ex. 1. Through three given points on the surface of a sphere, it is

required to draw a sphero-conic so that a given great circle shall be one of

its cyclic arcs.

[If yj, y^ and ys are the vectors to the three given points, it is necessary
to find /3 so that S/3pSap+ p^= may be satisfied on replacing p by y^, y2
and yg, a being a given vector. The vector f3 is given by

i8Syiy,y3=-2Vy2y3(SayrrM

Ex. 2. Find the relations between the cyclic normals of a cone and its

focal lines.

[Identifying (vi.) with the second form of (ii.), the required relations are

easily, obtained.]

Ex. 3. Prove that

S . V . Ya^YSeY . Y/SyYepY . YySYpa=
represents the cone which has five edges parallel to five given vectors,

a, ft, y, 8, €, and show that the form of the equation furnishes a proof
of Pascal's property of the hexagon inscribed to a conic. {Lectures on
Quaternions^ Art. 442.)

CONFOCAL QUADRICS.

Akt. 82. Quadrics of the family

Sp(cj>-hx)p= -1, : (I.)

in which ic is a variable parameter, are called concyclic, as they
have common planes of circular section (Art. 77).

The reciprocal system of quadrics

Syo(0+^)-V= -1 (II.)

is called a confocal system.

Because we may write (ii.) in the form

Sp(\lr+xx+x^)p = — (m-[-m'x-\-mV-{-x% (iii.)

it appears that three quadrics (ii.) pass through an arbitrary

point; and reciprocally, three quadrics (i.) touch an arbitrary

plane. Also one quadric (i.) passes through an arbitrary point,

and one quadric (ii.) touches an arbitrary plane.

Confocal quadrics cut at right angles. Let x, y and z be the
parameters of the three quadrics which pass through an arbitrary

point (a). Then

= Sa(^-\-x)-^a-Sa{<p+ y)-'^a = Sa[(<p-{-x)-^-((p-\-y)-'^]a
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for all functions 0+^, ((p-\-x)~'^, etc., have the same axes, and
are therefore commutative (Art. 66, Ex. 2, p. 95). Thus at any
point of the intersection of the quadrics x and y,

Sp(cp + x)-\cp-{-y)-''p = 0', (IV.)

which expresses that the normals (Art. 73, p. 108) (0+a.')"iyo

and (0 + 2/)"^/) are at right angles.

Ex. 1. Reduce So . ^--,—?_T;^rL+ ^L ^ . p to a sum of the form

ASp{cf>+a^)-^p+ BSp{cj>+^)-^p+CSp{ct^ + z)-

[We may employ the method of partial fractions, and treat <^ as a scalar,

it being commutative with scalars and with cf) + ^v, etc.]

Ex. 2. If ^'j y and z are the parameters of the confocals through the

extremity of the vector p, the expressions

Sp. (</,+^0-H^+y)-V, S/)(c^ + .r)-i(c^+y)-Hc^+ .~)-V, Sp(<{.+^)-^(cj> + zr^p,

are respectively equal to

T(cb-\-y)~^p^, zero, and —
y-^ z-x

Ex. 3. Prove that

Jx-y:\J{4>-]ry)-^p, sj.

are the principal axes of the central section of the quadric x made by the

plane parallel to the tangent plane at p.

Ex. 4. Find the centres of curvature at a point on the quadric .r, and
prove that they are the poles of the tangent plane to x with respect to the
confocals y and z.

[If y is the vector to a centre of curvature, two consecutive normals
intersect at its extremity, or y — p + t{<^+ x)~'^p is stationary when p and t

vary. Therefore

[1 + ^ ((^+ x)-^]dp + (^+ .r-)"^ p^t= 0, or ((^ + JP+ dp+ pd^= 0,

or dLp+ {(ji + x+ t)-^pdit=-0.

Operate with S(^+ ^)~V, and Sp(^ + .r)-i(^+ ^'+ ^)-ip= 0, and on
comparison with (iv.) the roots of this quadratic in t are seen to he y — x and
z-x. Therefore y = {^-\-y){4)+ x)-^p^ y' = {cfi + z){cf)+ x)-^p are the vectors to

the two centres. Observe that dp is also tangential to the quadric z.

Compare Art. 87, Ex. 1, p. 136, for the method employed.]

Ex. 5- If X, y and z are the parameters of the three confocals through
the extremity of the vector p, prove that

x+y+z= —m" — p^
;

yz+zx+xy= m'+ SpXp ; xyz= —m — Spyj/p.

Ex. 6. Prove that the plane SAp + l = touches a confocal at the

extremity of the vector

p = A-i(VA<^A-l);

and show that the locus of points of contact for a system of parallel jjlanes

is a rectangular hyperbola.
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Ex. 7. Prove that the locus of points of contact of planes through a line

is a twisted cubic.

[Put for A in the last example {\ + tfi){\-{-t)~^ and verify that an
arbitrary plane meets the curve in three points.]

Ex. 8. The locus of the poles of a plane with respect to a system of

confocals is a right line.

Ex. 9. The locus of the poles of planes through a given line is a hyper-
bolic paraboloid.

[p = {(f)
+ u)(X-\-tiJL)(l-\-t)~^ is the locus of a line dividing two given lines

similarly.]

Ex.10. The plane S/oAc^A =

is the locus of poles of planes perpendicular to A.

Art. 83. In many investigations relating to the confocals through a
given point, the extremity of the vector a, it is convenient to employ the
vectors

A= ((^+ .^)-ia, /x= (</)+y)-ia, v= {cf>+ z)-^a, (i.)

which when originating at the centre terminate at the reciprocals of the
three tangent planes. These vectors ai'e of course normal to the three
confocals. We have then

a= {cfi+a;)k=
{<f>+ i/)[x= ((^-\-z)v, SAa = S/>ta = Sva= - 1

;
(ii.)

and because these equations give

-l=S/x(<^+.r)A= SA(<^+y)^, or (.^'-^)SA/x= 0,

it follows that

S/>n/= Si/A = SA/>t= 0, (ill.)

or confocals cut at right angles.

We also have from the same equations

X= fji+ {i/-x){(fi+ x)-^fi, etc., (iv.)

so that fi^+ (i/-x)Sfji{(f)-\-x)-^fi= 0, (y-.r)Sv(<^ + ;r)-V= 0,

or {x-7/)-^=-SVfx{cf)+ x)-^Vfx=+SU\{<f) + i/)-m\, etc.,

Sfji{(})+j;)-^v=0, etc (v.)

And the axes of the section of the quadric a^ parallel to the tangent plane

are s/x—y.Vfx, Vt - z . Uv ; and those of the section of the quadric y
parallel to its tangent plane are sjy — x . UA, sjy -z . Uv.

Introducing a new self-conjugate function Q defined by the equation

6p = (f)p+ aSapj (vi.)

we may replace equations (ii.) by

{e+.T)x={e+y)fx={d+z)v^-o, (VII.)

so that A, fi and v are the axes and x, 7/ and z the roots of this function.
If S(o/3 = — 1 is the equation of any plane through the point a, and if ZS

is the pole of the plane with respect to any confocal u,

C7= (<^+ i6)co, or Zn-a= (0+ ic)u), ("^^m-)

because — a= + aSaw. If the plane touches the quadric w, the pole lies in

the plane, and the vector TH — a (joining two points in the plane) is normal
to w. Thus in order to determine the point of contact of the j^lane



124 CONFOCAL QUADRICS. [chap. ix.

S(i)p = - 1 and the parameter of the touched quadric, it is only necessary
to operate on w by the function and to resolve 6o) along and at right
angles to to ; for

d(jD= (jDY(D-^$oi + o)S(x)~^Oo)=Tn—a-UM; try = a + (oVo)~i^w, w= -Sw-^^w. (ix.)

The vector o7 being still supposed to terminate in the plane, the vector
^7 — a( = T) is tangential to the surface ic and perpendicular to o>. Hence as
trr varies subject to the condition S?7a) = Saa>= —1, we find by (viii.) that

S(t7-a)((9+ ?*)-Hn7-a)= 0, or 8t(0-{-u)-^t= ,...r. (x.)

is the equation of the tangent cone from a to the confocal w, referred in the
first case to the centre of the quadrics and in the second to the extremity
of a. The form of the equations shows that the tangent cones drawn from
a point are confocal. They intersect in pairs along any line through the
point, for (x.) may be replaced by

Sr(f0+ ^*X^+ ^2)^^O, (XI.)

and may be regarded as a quadratic determining the quadrics touched by a
given line (Ut= const.); and they intersect at right angles by the general
property of confocals.

We can thus determine the two quadrics touched by an arbitrary line.

Ex. 1. Prove that

(f + uXe + 11^)p= (f-\-toX-^ u^)p + ya{(ji+ u)Yap.

Ex. 2. A right line defined by the vectors o- and t of Art. 36, Ex. 4,

touches the confocals whose parameters are the roots of the equation,

Ex. 3. The lines through a given point touching confocals with a given
sum of parameters, generate the reciprocal of the tangent cone to a fixed

confocal.

[The cone of the lines is St{6 - m'^ - a^ - v)t= 0, if v is the sum of the

parameters.]

Ex. 4. If V and v are the vectors to the reciprocals of the tangent planes

of the confocals u and u' at the points a and b, and if t is the vector ab,

[Here t= (<^+ ^c') v' — ((f)+ u) v. This is Gilbert's theorem.]

Ex. 5. If the points a and b are both points of contact of the line with
the quadrics,

81/1/'= 0, Sv(^i/' + l=0.

Art. 84. There is a third general method which is often useful for

dealing with the properties of confocals. Writing the equations of the three
confocals through a point in the forms

T(<^+^)V= ], T(<^+^)V= 1, T(c/>+ .)V= l, (I.)

we are led to assume
/o=v^{(</>+-^)(<^+y)((^+2)}€ (II.)

as an expression for the vector to the point of intersection. The square roots

(<^+ ^)^, etc., are commutative, and, accordingly, on substitution in

Sp((^+^)-V=-l,
we find -l = S€{cf>-h^j)((f>+ z)€ = S€(j>h+ {^/+ z)Se(ti€ + 9/z€'^ (iii.)
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This is identically satisfied, for the confocal x as well as for the confocals

y and 2;, if

€2= 0, S€<^e= 0, Se<^2^=-1; (iv.)

or what is equivalent, if

€2=0, S€X€= 0, S€Vre=-l; (v.)

that is, if € is the vector to a point of intersection of three known surfaces,

one of which is of course imaginary. Therefore (11.) coupled with the con-

ditions (iv.) or (v.) is the vector to a point of intersection of the three

confocals ; and allowing any two of the parameters, y and 2, in (11.) to vary,

the vector equation represents the surface x ; if only one parameter {x)

varies, the equation represents the curve of intersection of the confocals

y and z.

Again, we may differentiate p, regarded as a function of x, y and z, as

given by equation (11.) just as if <^ were a scalar, and we have

'^''=*-(^+^Ty+^.)''= ("•)

and the method easily lends itself to the treatment of lines traced on a
quadric surface.

Ex. 1. Prove that the vectors (cf>+x)-^pj {4>+y)~^p, {cf)+ z)-'^p are mutually
rectangular, and that the squares of their tensors are

(z-x)(x-y) (x-y)(y-z) (y-z)(z-x)

where m(x)=m+ m'x+ m"x^+ a^, and where x, y and z are the parameters of

the confocals through the extremity of p.

[Using (11.), we have Sp{<j>-hy)-\(p+ z)-^p= S€(<f)+x)e= 0. Also

Sp{cj,+ x)-^p= Se(cf, + x)-\cj>+y){4>+ z)e.

This is reduced by replacing y by x+y-x, etc., to S€(<f> + x)~^€ multiplied
by a factor. On inversion of (^+ .r)~i the rest follows.]

Ex. 2. Find Tp2 in terms of x, y and z.

[x-{-y+z+m"=Tp\]

Ex. 3. Express the vector e in terms of the roots and axes of cfy.

Ex. 4. Prove that

Tdp2=i2-̂ ^~^y-^~-^W .

Ex. 5. Prove that p= ((f)+ u){(j)+x)~^(<j>+y)^(<^+ z)^€ is the equation of

a tangent to the curve of intersection of the quadrics y and z ; u being alone
variable.

[Use (VI.).]

Ex. 6. Prove that p = ((f)+x)~^(cf)+y)\(f>+ z)h is the equation of the
surface of centres of the quadric x—the locus of the principal centres of
curvature—when y and z vary. (See Art. 82, Ex. 4.)

Ex. 7. Find the lengths of the principal radii of curvature in terms of
X, y and z.

Ex.^ 8. The imaginary right line, t variable,

" * p= (<f^+ t)((f>-\-x)K

is an umbilical generator of the quadric x.
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[It is evidently a generator of the quadric, and parallel to a line to a

circular point at infinity for T(^+^)^€= 0. That is, it is one of the eight

generators through the four points in which the imaginary circle at infinity

cuts the quadric. But the tangent plane at an umbilic cuts the surface in a
point circle—or a pair of these imaginary generators. See Art. 67, Ex. 1, p. 96.]

Ex. 9. Find the locus of a point through which two of the three inter-

secting confocals coincide. Show that it is a developable surface generated

by the tangent lines to the curve

[This is the locus of the umbilical generators of the system, or the circum-
scribing developable.]

Ex. 10. The focal conies are double curves on this developable.

[Put t equal —g^, —g^ or —g^ in the equation of Ex. 8, and we get a plane
curve in one of the principal planes. For t= -g^we have

Sp(<f>-g,r^p= ^€(cl,-g,){4> +x)e=-l, S^>= 0.

The conic is double on the developable because a double sign is lost owing
to the destruction of the component of the vector normal to the plane.]

Ex. 11. If a is a constant vector, and x, y variable scalars, the equation

represents a quadric surface, <\> being a self-conjugate function.

[Assume the equation of the quadric to be S/o(a(/)''^+ 6<^+ c)/)+ l = 0, and
determine the constants a, h and c]

Ex. 12. Prove that the imaginary vector e of equation (iv.) satisfies the

relation v — 1 . e= Ve^c,

EXAMPLES TO CHAPTER IX.

Ex. 1. Three right lines through a common point are mutually at right

angles. If the first and second move in the planes SA/3= and S/>t/)=
respectively, the third describes the cone

SVA/oV/x;o= 0.

Ex. 2. The cone

SazSajSa^ SfSiSfSjSfSk SyiSyjSyk_
Sap "^ Sf3p

*"
Syp

contains the six unit vectors ^', y, k and a, ^, y, the vectors of each set being
mutually perpendicular.

Ex. 3. If the cone Spcj)p = has three mutually rectangular edges, the
condition m"=0 must be satisfied ; if it touches three mutually rectangular
planes, m'= 0.

Ex. 4. The four cones of revolution which touch the planes

SA/o= 0, S/x/o= 0, Syp=

are represented by T . Yp-Wpl, ± YfivTX (SA/zi/)-i= 1
;

and the cones of revolution through the three lines

VA/D=0, V/A/3= 0, Yvp=
are represented by T . p-'^Sp2 ± V/xvTA (SXfxv)'^= 1.
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Ex. 5. Three points fixed on a line move in given planes. Find the

locus of a fourth point fixed on the line, and show that it is represented by
an equation of the form

T{aYfxvSXp+ 6yi/AS/xp+ cYXfxSvp)= 1

.

Ex. 6. Interpret the equation

T/3-^Yl3p= eTX-^SXp

as determining the locus of a point moving in accordance with a certain law

in relation to a given line and a given plane.

Ex. 7. The polar planes of points situated on certain fixed lines cut a

quadric in circles.

Ex. 8. Find the locus of the centre of a sphere which rolls along two
straight wires.

Ex. 9. Determine the locus of the vertex of a right cone standing on a

given ellipse of which a and jS are the principal vector radii.

Ex. 10. A plane cuts a constant volume from a pyramid having its

vertex at the centre of a quadric. Find the locus of the pole of the plane

with respect to the quadric.

Ex. 11. Find a tangent plane to a quadric which along with three

Ynutually conjugate planes passing through the centre forms a tetrahedron

of minimum volume.

Ex. 12. Find the locus of the point of intersection of three mutually

perpendicular planes each of which touches one of three given confocal

quadrics.

Ex. 13. Find the locus of the foot of the central perpendicular on a

plane through the extremities of three mutually conjugate radii of a quadric.

Ex. 14. Find the locus of intersection of tangent planes at the ex-

tremities of three mutually conjugate radii of a quadric. .

Ex. 15. Find the locus of a point whence three mutually perpendicular

tangent lines can be drawn to a quadric.

Ex. 16. Find the locus of a point whence three tangent lines can be
drawn to a quadric so as to be parallel to three mutually conjugate radii.

Ex. 17. Show that the equation

'2<f>p p 4>^p

Sp<f>p p^ i4>pf

determines the directions of the radii of the quadric Spcfip+ 1 = which are

most or least inclined to the corresponding normals. Solve this equation.

Ex. 18. Through the extremity of the vector a mutually perpendicular

lines are drawn to cut a quadric. Prove that

-m" 1 . 1 1

1 + Sacf>a x^X2

where x^ and .r^ are the intercepts on one of the lines.

Ex. 19. From a point on the quadric S/3<^/3+l = 0, the extremity of

the vector a, mutually rectangular lines are drawn to terminate on the

surface. The plane through their extremities passes through the extremity

of the Vtector 2</)a

m
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Ex. 20. Find the volume of the frustum of the cone whose vertex is at
the centre of the quadric Sp(f)p + 1=0 and whose base is the intersection of

the quadric with the plane SA/>+ l=0.

Ex. 21. If UV^' is a fixed vector y, eliminate the scalar t and the
variable part of q from the relation

and discuss the locus represented by

t,=t(/j+„M^).

Ex. 22. The vectors a, f3 and y being unit and mutually rectangular,

show that the condition that

T</)a+ T</)/?+ T<^y

should be a maximum or minimum is

Ya(l>'JJ4>a+ Yf3cl>'V<j)j3+Vy <^' Uc^y =

where <^ is an arbitrary vector function, and prove that this is equivalent to

Tc^a=T(/)^= T</)y.
' \

(a) Hence derive a theorem concerning the conjugate radii of an ellipsoid,

Ex. 23. Through a variable point q on a fixed line V(/)-^)a= 0, a plane
is drawn perpendicular to a fixed line (y). Find the locus of points p in the
variable plane for which Top= eTpQ where e is a given scalar.

Ex 24. Show that the section of the cone Spcf>p = by the plane
SA/)+ l=0 is equal to the section of the quadric Sp<f)pS\(f)~'^k+ 1=0 by the
plane S\.p= 0.

Ex. 25. Find the equation of the surface which is generated by trans-

versals of the lines Y(p- /3)a= 0, V(p-/3')a'= and of the ellipse

p= y + y' cos t+ y" sin t.

Ex. 26. The envelope of the planes of intersection of the sphere
2SXp~^= i with a variable sphere passing through the origin and having
its centre on the quadric S/o^/)+ l=0 is the cone

(SAp)2+ Sp(^-V=0.

Ex. 27. From the extremity of the vector 8 which terminates on the
quadric Spcfip+ 1 = 0, a right line is drawn to intersect the vector radius a,

one of three mutually conjugate radii a, /?, y, and to be parallel to the plane
containing the other two. It meets the ellipsoid again at the extremity of

the vector —8- 2aS8<^a ; and the plane SXp+1=0 which passes through the

three points thus determined by the three radii is given by

\B8cha^S8cbB^S8<hyJ\S8<^a^S8</)^^SS<^y<

Ex. 28. Show that
<^-i(A +aO(l+0

is the locus of the centres of sections of the quadric ^pcfyp+ 1=0 made by
planes through the intersection of the planes SA/3 + l=0, SA'/) + l=0; and
discuss the nature of the curve.
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Ex. 29. Show that the surface represented by the equation

S[A(SA>+l)-A'(SA/)+l)][/x(S/x>+ l)-/i'(S/x/o+ l)]=0

may be generated by the intersection of two perpendicular planes each of

which contains a fixed line.

Ex. 30. Prove that the foci of central sections of the quadric Sp(f>p-{-l =0
generate the surface

p^ (Ypcf^pY
^

Sp(f>p SYpcfipcfiYp(f)p
" 0.

Ex. 31. The envelope of a sphere which passes through the centre of a
quadric and which cuts it in a pair of circles is a quartic surface touching
the quadric along a sphero-conic.

Ex. 32. Quadrics similar to Sp$p+ l=0 are described on a system of

parallel chords of Sp(f>p-\-l=0 as diameters. Prove that the envelope of

these quadrics is also a quadric, and find its equation.

Ex. 33. Prove that v 2 o v .
2m' _

where pn is the vector to the foot of a normal from the extremity of the
vector a to the surface Sp^p + 1 = and where m! and m are the second and
third invariants of the function <j).

Ex. 34. If a right line cuts a quadric at the angles and ^, show that

sin ^_sin &

where p and p' are the central perpendiculars on the tangent planes at the
points of intersection.

Ex. 35. If n is the length of the chord which is normal to a quadric at

the extremity of p,
2-= m"jo - (m' - mTp^) .p^.

Ex. 36. Pairs of mutually rectangular tangent planes are drawn through
the extremity of the vector a to the quadric surface S/3^/d+ 1=0; prove
that the locus of their intersection is

and show that this equation may be reduced to

m(Va/3)2+ S(a - p)ir{a - p)= m,'{a - py.

Ex. 37. The sum of the products of the perpendiculars from the two
extremities of three mutually conjugate diameters on any tangent plane to

a quadric is twice the square of the central perpendicular on the tangent
plane.

Ex. 38. In terms of the vectors r=p2 — pi, o-=Ypj^p2, show that the

equation gon/rr=0

represents the chords of the quadric Sp<f>p+ 1=0 which enjoy the property
that the normals at their extremities intersect.

E?;.* 39. The locus of the centres of chords at whose extremities the

normal^ intersect and which are parallel to a fixed direction t is the right

line Sp<t>T= 0, Spii^T^O.
J.Q. I



130 QUADRIC SURFACES. [chap. ix.

Ex. 40. Prove that the squared radii of the circular sections of the

quadric gp^+ 2S\pSfMp+ l=0 which pass through the extremity of the

vector (X are
g-^ + X-^(SkafgYg-' and g'^+ fM-^Sfia)Wg-'

where g, g' and g" are the latent roots of the linear function determining the

quadric. Interpret these results.

Ex. 41. Determine the spheres cut in diametral planes by a quadric.

Ex. 42. If planes through an edge (/a) of the cone S/)^p= afld through
the vectors a and ^ respectively meet the cone again in edges coplanar with
the vector y, show that

S(pSacl>a-2aSpclia){pSf3cf>/3-2/3Sp(t>l3)y= 0,

and reduce this by the aid of the equation of the cone to i

Sp(j^aSfS<f>y + Sp<j)/3Sycf>a - Spcl>ySa(f>f3= 0.
\

Ex 43. Using the notation of Art. 38, p. 42, show that if a translation

represented by the vector o> will carry the tetrahedron abcd so that it

becomes inscribed to the quadric Spcfip+1 = 0, we shall have

(0= ^v-i cf>-^^XSa<f>a ; S2ASa(^a<^-»2ASac^a+ 4v2^Sa</)a+ 4v^= 0.

Ex. 44. It is required to place a pair of tetrahedra abcd and a'b'c'd' so

that their vertices may be corresponding points on a pair of confocal

quadrics. (Robert Russell.)

(a) A quaternion statement of this problem is to determine a self-

conjugate function <l>, a scalar u, a quaternion q and a pair of vectors k and
K so that the conditions

^~^{p-K)= {^+ uy'^(qp'q~^ -K')= a unit vector

may be satisfied when p and p' terminate at corresponding vertices of the

tetrahedra in their initial positions.

(6) If (j> is the linear vector function defined by the relations

^{a-^)= a'-^\ </>(/? -8)= ^'-8', <^(y-8)= y-8',

we find that ^*-i= <^'<^-l, and q()q-^= {(j>'4>y^cfi'.

(c) Also in the notation of Art. 38, k and u are given by

2v. (</)'</)- l)K=-EASa((^'(/)-l)a, 2;(^+ SK(</)'<^-l)K)+2^Sa((^'(^-l)a= 0.

Ex. 45. A plane mirror (normal v) is moved so as to reflect the light

from a star in a fixed direction (8). Show that if y is the unit vector

towards the celestial pole, cr the unit vector towards the star at the time
^= 0, the vector v must describe the cone represented by

v\\(y 'o-y' + S) or v^Sy{(r+ 8)-=2SvySv8,

(a) Show that the vector

y ''ky'^.y "a-y .y 'Ay^

is independent of t provided the vector A satisfied a certain condition of

perpendicularity, and interpret.



CHAPTER X.

GEOMETRY OF CURVES AND SURFACES.

(i) Metrical Properties of Curves.

Art 85. Supposing that from each point of a curve a vector.

rj is drawn, variable with the position of the point, let us

consider the rate of rotation requisite to produce the change of

direction of the vectors rj as we pass along the curve. In the

figure P and P' are any two points on the curve, and the vector

PH = U>y is a unit vector along the emanant vector rj drawn
from P, while P'H' =UV is a unit vector along the emanant rj'

drawn from P'. The vector PH'' is drawn equal to P'H'.

R..£l-

Ur7

Fig. 27.

In the limit the quaternion

.(I.)
JJrjT(p'-p) PH.TPP'

is a vector perpendicular to fj and to r]' so that rotation round

it from rj to rj' is positive, the angle of the quaternion (the

exterior angle at H) being ultimately equal to a right angle.

The tensor of this vector is ultimately equal to the ratio of the

circulaj- measure of the angle HPH" (the angle between »; and rj')

to the ''arc of the curve, and thus the vector represents in

magnitude and direction the rate of rotation in question. In
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terms of the differential of JJrj and the corresponding differential

of yo( = OP), the vector of rotation is

the second form of the expression for the vector being deduced
from (iv.), Art. 53, p. 68, and the third form resulting from the

consideration that

If, in particular, we replace the vector ;; by dp, a vector

tangential to the curve, we have for the vector of rotation of

the tangent, or the vector ciirvature at P,

dIZd£_ydV 1 _ VdpdV
dp ~ dpTdp~ Tdp=^ ' ^ ^^

for in accordance with the foregoing this vector represents in

magnitude and direction the rate of bending of the curve at the

point P, the bending taking place in the plane through P at right

angles to this vector.*

In the case of a plane curve this vector curvature is always
parallel to a fixed direction—that of the perpendicular to the

plane, but in the general case the direction of the vector is

continually changing. The plane through P to which it is

perpendicular, or the plane of the bending at P, is the osculating

plane of the curve at P.

To investigate the rate of rotation of the osculating plane as

we pass along the curve, or, what is equivalent, the rate of

rotation of the normal UVdpd'^p to that plane (compare the

third form of (iii.))> we have by (ii.),

dUVdpdV _ VdpdV J _ d3p

UVdyodV . Tdp ~ • VdyodV 'Tdp~^^P' ^ VdpdV •" '^ ^^

since dVdyod^p= Vdyod^p. This is the vector torsion of the curve

at P. It gives in magnitude and direction the rate of rotation

of the osculating plane, and we see (what is geometrically

obvious) that the osculating plane rotates about the tangent
line (Udp).

* The phrases vector curvature and vector torsion correspond to Hamilton's vector

of curvature and vector of second curvature. We shall see what advantage results

from considering an angular velocity to be a vector on the plan of this article,

and the present case is quite analogous. It is easier in Quaternions to represent

the primary characteristics of a curve, the curvature and the torsion, by vectors

than to represent the somewhat artificial and indirect conception of an osculating
circle or radius of torsion. The theory of emanant lines has been worked out by
Hamilton {Elements of Quaternions, Art. 396).
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The vector curvature and the vector torsion may be com-
pounded into a single rate of rotation

. =V^+Ud,.s4^, (V,

which may perhaps be called the vector twist of the curve. This

rotation produces the same effect on the tangent line and on the

osculating plane as the vecior curvature and the vector torsion

respectively, for the former vector is at right angles to the

osculating plane and the latter is parallel to the tangent line,

and we do not here consider the rotation of the osculating plane

in its plane or the rotation of the tangent line round itself.

If the equation of the curve is given in the form considered in

Art. 48, that is if p is given as a function of a parameter t, the

expression (v.) may be written in the form

^ =-^+U^'S/^ (VI.)

where p\ p and p" are the successive deriveds of p with respect

to the parameter.

If the arc of the curve is taken as the independent variable,

and if p^, p^, /03, etc., denote the successive deriveds of p with
respect to the arc, the relations (compare Art. 48, p. 63)

Tpi=l, S/Oi/02= 0, SyOiyO3+ p/ = 0, ctc, (VII.)

found by equating to zero the successive deriveds of Tp^, serve

to simplify the various formulae. Thus (v.) becomes

<«> = /0i/02+ /0iS-^ (VIII.)

P\P2

Ex. 1. Show how to connect the deriveds of p taken with respect to t

and with respect to s.

ds „ /d«\2 dh ^ -]

/=/>id7' P=PAdt) ^^idT^' ^*^J

Ex. 2. Show that the tangent line and the osculating plane of any curve
may be written respectively in the forms,

'^ = p-\-xp\ '^=^p-\-xp'-\-yp",

X and y being variable scalars.

Ex. 3. The tangent line and osculating plane of the twisted cubic

may be expressed by

respectively, a being a constant vector and <^ a given linear vector function.

Ex. 4. Calculate the vector w for the helix

trr= a{i cos t -^j sin ^)

+

kbtf

I, j and k being mutually rectangular unit vectors.
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Ex. 5. Find the centre of the osculating circle of a curve,

[The vector to the centre from the point on the curve has the same
direction as Yp'p'Tp'-^ . JJp\ and its tensor is the reciprocal of that of this

vector.]

Art. 86. The important relations (ii.) and (iv.) of the last

article enable us to reduce every affection of the curve to a

function of the unit vectors

a = Udyo, y = UVdpdV, l3
= VYdpd^p\Jdp,..: (I.)

of the scalars

TVdpdV ^_g cJBp

^1-
Td/>3 ' ''i-^Vd^dV

and of the deriveds of these scalars with respect to the arc.

We notice first that a, (3 and y form a mutually rectangular

unit system so that a/S = y, /3y = a, ya = (3. The scalars a^ and
Cj are the ordinary scalar torsion and curvature respectively,

and partly for the sake of symmetry we regard them as the

deriveds -r-^, ^ oi two angles a and c. The angle a is the total

angle through which the osculating plane has turned about the

tangent line in passing from some initial point P^ on the curve
to the point P. In like manner c is the total or integrated angle

through which the tangent line has turned in the osculating

plane from P^ to P. The vector a is along the tangent, /3 along
the principal normal and y along the bmormal to the curve.

Denoting still deriveds with respect to the arc s by suffixes,

the fundamental formulae, (ii.) and (iv.) of the last article, give

in accordance with (i.) and (ii.) of the present, the simple relations

«i Yi ^1 / X= ^iy> ^ = a.a, ^= a.a-{-c.y = o), (III.)
a y p

or a^ — c^P, l3i
= a-^y— c^a, yi=—a^a, (iv.)

or simply rj^ = Ycotj, (v.)

if r] stands for a, jS or y.

The formulae in a and y are translations of the formulae of

the last article. The formula in fi is derived from these by aid

of the relation /5 = y«.

To express the successive deriveds, with respect to the arc, of

the vector to any point on the curve in terms of a, 13, y and of the
scalars a^, c^ and the deriveds a^, c^, etc., of these scalars, we have

P3 = a2 = ^iCi+ /5c2 = ^C2+ (yai-aCi)Ci,
|

P4= i^Cg+ 2(yai- aCi)c2+ (ya^- ac2)c^-^W+ ^i^)^i

;
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and in general we shall find the ti*^ derived to be of the form

pn=aAn-{-l3Bn-\-yCn. (VII.)

where An, Bn and (7„ are certain scalars {not the n^^ deriveds of

scalars A, B, G, however). We may remark that the deriveds

of highest order of Cj and a^ occur in yo„ in the term ^c^+ yotn-iCi,

as we see from (vi.).

Thus, as we have asserted, every affection of the curve may be
expressed in terms of a, jS, y of a^ and C-^, and of the deriveds of

these^ scalars. (See Appendix. Elements, Vol. ii.)

Art. 87. The developables connected with the curve may all

be investigated in one common way.
The vector rj and the scalar e being in some way variable with

a point on a curve, a plane of any developable connected with
the curve is expressible by an equation of the form

^{Tn-p)rj = e, (I.)

V5 being the variable vector to a point in the plane, and p being

the vector to the point P on the curve to which the plane corre-

sponds. The equation of a successive plane is of the form
pi

I ^ . .,
S(CT-yo),;-e+ ds.^-(S(trr-yo)»7-e)= 0, (ii.)

e, r] and p being regarded as functions of the arc s, but zs being
independent of s. Thus two successive planes intersect in the

line of intersection of the first plane and of the plane determined
by equating to zero its derived with respect to s. The inter-

section of the plane (f.) and its consecutive is accordingly the

line Common to (l.) and to the plane

I

S(Tn-p)t]^= Sat]+ e^, (III.)

i/j and e^ being the first deriveds of rj and e.

This line of the developable is also given by the vector

equation (Art. 35 (i.), p. 39),

where t is a, variable parameter.

In the same way, equating to zero the second derived of (i.)

with respect to s,

S(T^-p)r]2=2Sar]^+ SPrj.C^+ e^, (V.)

and combining this with (ill.) and (l.), we have the point of

intersection of three successive planes of the developable.
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This point is on the cuspidal edge of the developable, and it

corresponds to the point P on the curve. More generally if in

(vi.) we allow the arc to vary, we have the equation of the

cuspidal edge of the developable.

In particular, the polar developable corresponds to »?= a, e = ;

while >7 = /8, 6= gives the rectifying developable; and »y= y,

e= is the tangent line developable. It is shorter in many cases

to treat the developables ah initio rather than to substitute in

the general formulae (iv.) and (vi.).

Ex. 1. The vectors from a point on the curve to the centres of the

osculating circle and sphere are respectively

^ and -+7 3- .
—

•

Cj Ci 'da Cj

[These expressions follow from consideration of the polar developable.

Or the first is geometrically obvious, and it is also evident that the centre

of spherical curvature lies on the polar line, TS= p-\-^-\-xy, which is by

geometry the locus of points equidistant from three consecutive points on
the curve. To determine x we may express that V5 is the vector to a point

which is momentarily stationary as we pass along the curve. Thus

d^=0=a+5"^ +^£(i)-^^a,+g.y, and therefore ^=„^.^,g)-

We must remember that x is not here a function of s. ^x is some small

scalar. See the next example.]

Ex. 2. For a spherical curve

[In this case we can determine x so that the vector in the last example
terminates at a fixed point in the centre of the sphere containing the curve,

and now ^x : ds is the derived of x with respect to .<f, so that

Ci~ds ds dsKa^dsKcJ J'

The method here employed is often useful. The condition may also be
found by expressing that the vector to the centre of spherical curvature
terminates at a fixed point. The condition is momentarily true (not an
identity) if five consecutive points lie on a sphere.]

Ex. 3. Prove that the rectifying line is V(trr — p)w=0, and that the

cuspidal edge of the rectifying developable is CT=/3-— - j~\~^)'

[The rectifying plane S(ZJ-p)f3= through the tangent line and at right

angles to the osculating plane, generates this developable.]

Ex. 4. The curve is a geodesic on the rectifying developable.

[Prove that the angles of the quaternions

(o>+ d(o):a and (w+ da>) : (a+ da)

are equal to the second order of small quantities, and hence show that

when the developable is flattened out the curve becomes a right line, so

that it is a line of shortest distance (or a geodesic) on the developable.]
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Ex. 5. If the ratio of curvature (scalar) to torsion is constant, the curve

is a geodesic on a cylinder.

[If Til) . cos H= Ui, Ta>sin^= Ci, the angle H is here constant, and
equations (m.), Art, 86, give d(a cos ZT+'y sin JI)= 0, or on integration U(o= >[:,

a constant vector. The rectifying developable is therefore a cylinder.]

Ex. 6. Show how to determine the curves for which the ratio of

curvature to torsion is constant.

[By the last example we have a^= ya sin H . Tw=V^a . Tw. If d^=Tw . d«,

we have, on changing the variable from s to t, a' = V^a, and on
differentiating,

a"= Yka'=kYka= -a-^S^a= -a+ kcosH;
A2

or -=-2(a-^cosi7)+ (a-^cosZr)= 0.

The integral of this equation is a — k cos H=kcos t+ fi sin t, and as we
must have S^a=— cos^ and Ta= l, it appears that A and /x must be
perpendicular to one another and to k, and that their tensors must be equal

to sin IT. Thus
a= ^ cos H+ sin II{i cos t-^j sin t),

and on integrating again

'n5={ads=pQ+ kscosII-{-sin H . [(^cos^^-^*sin?)ds,

where p^ is a vector constant of integration.]

Ex. 7. Find the conditions that the unit vectors (a, ^, y) of one curve
may remain constantly inclined to those (a', /3', y') at corresponding points

of another.

[We must have wds= w'ds', or ada+ yd<?= a'da'+ y'dc'. Hence either

/?'
II

/3 or else da : dc= -Sy^' : '^a^'= const. In the second case both curves
are geodesies on cylinders. In the lirst, if a makes the angle u with a,

y' makes the same angle with y (the four vectors being coplanar), and
II=ii + H'. In other words,

da = cos u . da' — sin u . dc', dc= sin u . da'+ cos u . dc'.]

Ex. 8. Find the unit vectors for the locus of centres of spherical

curvature, and show that they remain constantly inclined to those of the
given curve.

Ex. 9. The vectors p and p' are drawn from a centre of reciprocation to

a point on a curve and to the corresponding point on the cuspidal edge of

the developable into which the curve reciprocates, prove that

p'ySyp=py'Syy=Z^
where K is the radius of reciprocation and where y and y' are unit vectors
normal to the osculating planes at p and p.

(a) Compare the curvatures and torsions of the two curves.

Ex. 10. Compare the unit vectors for a curve and its inverse.

(ii) Ruled Surfaces.

Art. 88. Having showed in the last article how to determine
the surfaces generated by planes connected with the curve, we
shall now consider the surfaces generated by the emanant line

(comp^e Art. 85, p 131)
V(trr-p);; = (L)
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Reverting to p. 40, Art. 36 (v.), the shortest vector QQ' from
the line to any other line V(trr— p')^' = is

QQ' =VWS4^, and OQ=yo+ >?S ^V^^-- (H-)

Putting in these p'^ p-]rdp, rj' = r}-{-dr] and proceeding to the

limit having divided Q'Q by T(p'— p), we find
;

^ =V,d,S^=,S^ =^S^^ = p,,....(nr.)-
Tdyo Yridr] I Vrj dJJr} ^ ^ ^

by Art. 85 (ii.); and neglecting a vanishing term in the

expression for OQ,

the various transformations being easy consequences of the

formula just cited, and p being a scalar defined by

Udyo _ ^ dp _ ^ dpJJt]

[rjrj-^~ dVr]

The vector pi represents the rate of translation of the emanant
line as it passes through successive positions, this vector being
the ratio of the shortest distance between consecutive positions

to the arc ds of the curve. In other words, the emanant may
be supposed to pass from one position to a consecutive in virtue

of a rotation ids about the shortest distance QQ' coupled with a

translation QQ' = ptds along that shortest distance. Or again

p is the ratio of the shortest distance to the angle between the

consecutive lines. The quantity p is usually called the para-
meter of distribution of the ruled surface, though the theory of

screws would offer the more suggestive term pitch, because the

transference of the generator from one position to the consecutive

is in the language of the theory of screws effected by a twist

about the screw coaxial with the shortest distance and of pitch p.

The point Q, the extremity of the vector (iv.), is the point of

closest approach of successive generators; and as s varies Q
describes the line of striction of the ruled surface. For a
developable, this coincides with the cuspidal edge, and p
vanishes.

Ex. 1. Prove that the line of striction and the parameter of distribution

of the surface generated by the principal normals of a curve are

Ex. 2. The tangent to the line of striction of this surface is parallel to

and the shortest distance between consecutive generators is parallel to w.
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Ex.3. If r)= aco8l+ (3smlcosm+ysmlsmm,
prove that the condition that the euianant line tj should generate a

developable is

sin^. d(a+ wi)-cos^sin7ndc= or sin?= 0.

[By (v. ) if JO= 0, Sarjdr) = 0.]

Ex. 4. Prove that no line except a in the plane of a and /? can generate

a developable ; that the only developables generated by lines in the plane of

a and y are the tangent-line and the rectifying developables ; and that any

line whatever in the plane of (3 and y is capable of generating a developable.

[For the plane of a and JS, ^= or m= 0, and m=0 is impossible if a

varies. For the plane of a and y,l= or m = -. If m= -, we find t/= U(o

since sin I .da= cosl .dc. If ^= ^, we have a series of developables

CT=p+ ^(/5cos(a-ao)-y sin(a-ao)) ;

and their cuspidal edges are

trr= p +^ - '^^ tan (a - ao),

Qq being an arbitrary constant.]

Ex. 5. Prove that the curves

^x trr=p+"-'^ tan(a-ao)

are the evolutes of the curve ^=/o, and that they lie in the polar developable.

Ex. 6. If the emanant is perpendicular to the tangent, prove that

_ T/Cjcosm ^ _ a^+ m^

where 17= /5 cosm+ y sin 7w.

Akt. 89. The normal to the ruled surface

Tn = p-\rUri (I.)

at any point ct is parallel to

p:=Yr}{dp+ udf]), (II.)

this vector being perpendicular to every tangential vector

dz:^ = dp'{-udr}-\-r]du (iii.)

The tangent plane is

S(7;y-p)Yr](dp+ udf]) = 0, (iv.)

and as it generally involves u, it varies from point to point along

the generator. Moreover, since it involves u linearly, the an-

harmonic of four tangent planes is equal to the anharmonic of

the four corresponding normal vectors (ii.), or of the four cor-

responding points of contact (i.), (Art. 37, p. 41).

Expressing that the tangent planes at two points u and u' on
the saijue generator are perpendicular, we have a relation

Si/|/'= 0, or SYr}(dp-{-udri)Yrj(dp-hu'drj)= 0, (V.)
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which determines an involution between the corresponding points

u and u. This may be thrown into the form

because (SAm"^)'-T(Xm"')'= -T(VX^-i)2. Comparing with
equation (iv.) of the last article, it appears that the point Q in

which the generator meets the line of striction is the centre of

the involution, and that the foci are imaginary. If C and C'

are the two points u and u, it is not difficult to see that this

equation (vi.) is equivalent to

QC.QC'=+p^ (VII.)

QC and QC' being vectors, and because their product is positive,

they must be oppositely directed. That the quantity on the

right in (v[.) reduces to Trj-^^p^ follows most easily by taking

the arc as the independent variable, and then

= _^-iSUd^.ri

^y (v-) of the last article.

Ex. 1. If the tangent planes of a ruled surface touch the surface all

along the generators, the surface must be a developable or a cylinder.

[The direction of the normal must be independent of u. This requires

d7;||r;, that is, dUi7 = 0, or else dpH?;, or the line is a tangent to the curve
^= p.]

Ex. 2. If for any point p= the tangent plane touches all along the
generator.

[A generator of this kind is said to be tarsal. A ruled surface has in

general a definite number of torsal generators.]

Ex. 3. The point q being on the line of striction, prove that the tangent
of the angle between the tangent planes at q and at any point c on the
same generator is

TCQ
tan A=^.

P

Ex. 4. Prove that the vector velocities of the points c and c' are at right

angles, and compare their magnitudes.
[The vector velocity of c is i{q,c+p). See Art. 88.]

Ex. 5. Prove that the vector to a point on the line of striction of the

quadric S/3<^p+ l = 0, and the corresponding parameter of distribution are

respectively

where Sr]<f)r]= 0.

[See Art. 88. To reduce we may take r; to be a unit vector so that

Srjrj'^O, Sr]'4>r]=0 as well as S7](fi7j = 0.]
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(iii) Curvature of Surfaces.

Art. 90. Projecting a curve on any plane, normal to the fixed

vector k, the curvature of the projection is (Art. 85 (iii.), p. 132)

d.Vd.k-Wkp _ Y,k-''Ykdp.k-Wkd^p _ k-^Skdpd^p

d.k-^Ykp ~ T(k-Wkdpf ~ TiYkdpf

dUdp Tdp3
-/c b/.

^^^ T(Ykdpr ^^

or the curvature of the projection is the projection of the cur-

vature into the cube of the cosecant of the angle between the

tangent to the curve and the normal to the plane of projection.

If the plane of projection is parallel to the tangent, the pro-

jection of the curvature is the curvature of the projection.

Resolving the vector curvature of a curve traced on a surface

into its components perpendicular to and along the normal j/,

we have

. dUdp^.-iV.dUdp ,g^dUd£
dyo dp dp ^ ^

and since Si/dyo = 0, the first component is, by what we have just

proved, the curvature of the projection of the curve on the
normal plane {l.vdp) to the surface through the tangent line, and
the second is the curvature of the projection on the tangent plane.

Remembering that Svdp — 0, and that its derived is also zero,

or Si/d'^yo= — Sdt/dp, the first component admits of the trans-

formations

dp ^ ^^ ^ dp.v.l^dp dp.v.Tdp ^ ^

The last of these shows that the component is the same for all

curves traced on the surface, provided they have a common
tangent line dp, dv being a linear function of dp ; and thus in

particular it is the curvature of the normal section of the surface
through dp. This is Meusnier's theorem—the magnitude of the
curvature of the normal section is that of the oblique section

into the cosine of the angle between their planes.

The second component is, as we have already shown, the cur-

vature of the projection of the curve on the tangent plane, or it

is the rate of bending of the curve round the normal (or in the
tangent plane). It vanishes for a geodesic—the straightest curve
on the surface between a pair of points—for such a curve can
have no component of bending in the tangent plane ; and it is

called the geodesic curvature of the curve. The difierential

equatipn of a geodesic is therefore

SixipdUdyo = 0, or ^vdpd^p = (iv.)
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The normals to the surface along the curve trace out a ruled
surface, and by Art. 88 the equation of the line of striction and
the value of the parameter of distribution are

\ '^='^+'^4^' P-^yl^r (V.)

The tangent planes along the curve generate a developable.
This and its cuspidal edge are respectively represented by

^ ,
^r J ^ ,

Vi/di^Sdpdj/

5 ,

-

;. I

Art. 91. ,
If fp is any scalar function of p, and if we write

d/yO = 7lSl/dyO, dj/=0d/), (i.)

the function ^ is self-conjugate when n is independent of p or
when it is a function * of fp.

Let dp and d'p be any two independent differentials of p so that

d'dyo = dd'yo, d'dfp = ddfp (ii.)

We find on expansion by (i.) if dn = S(Tdp,

d'dfp = nScpd'pdp+ nSpd'dp+ Scrd'pSi/dp, 1

ddfp = nS(pdpd'p+ nSpdd'p+ Sa-dpSvd'p
;

and by (ii.) these expressions give
j

Sdp(n<pd'p-\-vS(rd'p) = Sd'p(n(pdp+ vS(rdp) (in.)

The function 7i(j)Z:5 -{- vSo-rri is therefore self-conjugate ; and if n
is constant so that a- is zero, or if it is a function of fp so that

(r\\v, the function ^ is self-conjugate likewise. We also observe
that if 6 is the spin-vector of 0,

2n€-{-Yv(7 = and Si/e= (iv.)

This scalar condition is in fact the condition that Svdp =
should lead to an integral /p = const.

If the equation of a surface is given in the form /yo = const.,

the differential vanishes if dp is any tangential vector at the
extremity of the vector p, and the vector v is parallel to the

normal. J

Art. 92. In applying the results of the last article to the

study of surfaces, we shall leave Tv arbitrary, and shall write

^ = 0^-fVe. The spin-vector e disappears automatically from
Sdpdv — Sdp(l)dp = Sdp^Qdp, whatever vector dp may be, and it

also disappears from Vi/di/= Vi/(0o+ Ve)dp, because in this case

Si/dp = and also Si/6= by (iv.) of the last article, so that

Vi/Vedp = 0. Thus we have

di/= ^dp = (0o+ Ve)dp, Sdpdi/= Sdp0odp, YAp^Yvip^dp. (i.)

* This is included in a more general theorem (Art. 60, p. 80).
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Writing C for the magnitude* of the curvature of the normal
section parallel to dy9,

0=-^^, SAp= 0; (.1.)

and it follows at once by Art. 73, p. 107, that G is the inverse

square of the radius of the conic

St;5(P^p=—Tv, Si/trr= 0, (iii.)

which is parallel to dp. It is also evident from (i.) that Nvdv is

parallel to the radius of this conic conjugate to dp.

Remembering that the function ^^ is independent of dp, al-

though it involves p in its constitution, we may for any point on
the surface regard ^^ as constant, and we may apply the formulae
of Art. 75 to calculate the directions of the principal axes of the

conic (ill.)- The inverse squares of the principal radii of the

conic are the principal curvatures {C-^ and C^ of the surface, and
are the roots of the quadratic

and unit vectors (tj and Tg) along the principal axes are deter-

mined by
Tili(^„-CiT.)-V T2l!(0o-C2T^)-'<'. (v.)

The three vectors Tj, Tg and JJv form a mutually rectangular

unit vector system, and we suppose the directions chosen so that

Writing also

Udp = Ti cos ^+ T2 sin ^, (vi.)

the expression for the curvature (ii.) of the normal section

reduces to

G=G^GO^H+ G^B,uiH\ (vii.)

by (i.) we also have

YAv = {r^G^GO^l-TiG^sml)Tv^TdLp, (vili.)

since ^T^Tg^o^^P = T-^^r^fp^^p — rgSr^^o^^P

and the vector OQ to the point of closest approach of consecutive

normals along dp and the scalar p (Art. 90, (v.))» assume the

forms

oo-n-TT. ficQs'^+ ^2S^^'^ (^j-^)sin^cos_^
VH-p

^^-c^z^Q^H-^G^'sinH' ^~ G^'cosH+ GMnH' ^ '^

* It is not hard to see by considering the sense of rotation that if we suppose
C to be, positive for a surface like an ellipsoid, the sign selected in (ii.) requires v

to be drawn on the. coiivex side. Of course there is no ambiguity about the
vector curvature.
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The quadric

S(C7-yo)0o(^-/o)+ 2Si/(CT~p)= O, (X.)

in which t7 is variable and p constant, has complete contact of

the second order with the surface. We have in fact at the point
Toy— p, O = Sdc70^dtrr+Si/d2n7, where dtrr and d^t? are differentials

of m as terminating on the quadric, and this is also true for

differentials of the vector to a point terminating on the surface.

The equation of the quadric may also be written in the form

S(trr-^+ 0^-V)0^(CT-p-t-^^-i^) = S^0o"V (XI.)

and it is not difficult to prove that the principal curvatures are

the parameters of the confocal quadrics

.S(?7-/)+ 9!>o-V).(0o"'-C^r'Ti.-i)-i(^-/o+ 9!>o"M = Si/0o~'»^(xil.)

which pass through the extremity of p. The subject will be
resumed in Art. 156, p. 295.

Art. 93. The equation of the normal to a surface at the
point p being

TS^p — Xv, (i.)

to find the condition that two successive normals should intersect,

we express that the extremity of V5 is momentarily stationary

and we have

dtrr = = dyO — Xdv— V^X = dyO— iC^dyO— vdiX, (ii.)

where die is some small scalar if dyo is small (see Art. 87, Ex. 1).

The condition of intersection is therefore

Sd^,/d^= 0, (III.)

and this is the differential equation of the lines of curvature. I

Moreover we have from (ii.)

dp\\{\-X(j>)-\ where Sr.(l-iC^)-ii/= 0, (iv.)

because Si/d/o = 0, and from these equations we can find the

directions of the lines of curvature and the principal curvatures

(7^ = a5j-^Ti/"^, G<2^= x^~'^Tv~^ if x^ and x^ are the roots of the

quadratic.

More directly, we have for the vectors to the centres of

curvature,

xn^ = p-G^-^Vv, v5^= p^Gf^'\Jv, (v.)

and if dj/o and d^p are tangential to these lines,

diyo = Oi-idiU,., d^p = G,^-^d^Vv', (VI.)

and the measure of curvature, or the product of the principal

curvatures, is
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if dyo and d'p are arbitrary tangential vectors, as we may prove

by supposing p and Ui^ expressed in terms of two parameters.

The interpretation of this remarkable expression is that the

small area determined on a unit sphere by lines drawn through
its centre parallel to the normals round any small contour on
the surface, bears to the area of the small contour a ratio equal

to the product of the principal curvatures.

If we suppose the vector to a point on the surface to be a

function of two parameters t and u, and if we use upper accents

to denote differentiation with respect to t and lower accents for

differentiation with respect to u, we have

dp = pdt-{-p^du,

and Tdyo^= edt^+ 2fdtdu -[-gdu\

if e=-p'\ f=-Sp'p^, 9=-p? (vm.)

Writing also v = ^pp, , equation (ii.) becomes

p'dt+ pdu— x(v'dt+ v^du)— pdx = 0, (ix.)

and according as we eliminate x and da; or d^, du and dx we find

the differential equation of the lines of curvature

dt^Sppv-dtduS(pi^^+ py)v-{-du^Sp^v^v= 0, (x.)

or the equation of the principal curvatures (C=x~'^Tv~'^)

h- C^Ti;^-hCTi;S{p\+ p'p^)v-Sv\p = (XL)

It is not difficult to see that we obtain for the measure of

curvature the expressions

CjOg . Tj/*= Si/p'Svp^^— (Sj/^/)^

=SY.p"Y,p,-(v,p:f+,^(Sp"p-p;^y, (XII.)

and that in terms of the deriveds of e, f and g,

2Y.p' = (e-2f)p+e'p,, 2V.^;= -g'p+e^p^,

2V.^.= -g.pH^f-9lp., ^{^p"p-p:') = ^-^f;+9\
„2==y2_g^. (xjjj)

and hence it follows that the measure of curvature is an explicit

function of the quantities e, f and g and of their deriveds, so

that the measure of curvature depends only on the expression
(viii.) of the square of a linear element. If then the surface

undergoes any transformation in which the lengths of linear

elements remain unchanged, the measure of curvature preserves
a constant value.

Art. 94. Tlie following kinematical method is often useful in investi-

gating the geometry of a surface. Suppose the vector p to a point on the
surface to be given in terms of two parameters, u and v, and let a unit
vector a be drawn at the extremity of the vector p tangent to the curve

J.Q. K
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u variable ; let y be the unit vector along the normal at the same point and
let /?=ya be at right angles to both—a tangential vector. These three

variable vectors may be supposed connected with three fixed unit vectors

e, ^'j h by the relations

qiq-^= a, qjq-'^= (3, qkq-^^y, (i.)

so that the conical rotation represented by q would bring the vectors i,j, k

into parallelism with a, /?, y. These relations being supposed to hold for all

points on the surface, it follows that q must be a function of u and v. It

will be proved in Art. 106, p. 173, that if ^ is any vector function of u and v,

its differential is expressible in the form,

dJ= V(co'd^+ o>4v)5+ d(^), (II.)

where* wi'diU+ oi^diV= '2Yd.qq~^ and d(^)= ad.r+ /5d?/ + 7d2; if ^ = ax+(^y-\-yz^

while of course d^ involves differentials of a, (S and y.

We shall write in terms of a, /?, y,

(D'=aa'+ ftb' + yc\ o>^= aa,+ ^6,+ yc,, (m-)

so that equation (v.), Art. 106, is equivalent to

'da' 9a, ,, , , 36' 36, , , Be' 3c ,, ,, . .

-7^—^ = bc, — bfi ; 75 7=~= ca, — ca
; ^— P^= ab, — an ; ....(iv.)

&i) OU OV OIL OV OU

these being the results of equating coefficients of a, ^, y in the equation

cited :

3(0)') 3((o,) „
,

A ?5—^= VCO W,.
OV OU

It will be sufficient for us to confine our attention to the case in which
the curves u and v cut at right angles, so that ^ is tangent to v variable,

since a is tangent to u variable. There is, however, no difficulty in taking

the general case. We have then for the orthogonal curves,

dp^AadiU+ BfidiV and Tdp^= A^dLu"^+ B'^dv^ (v.)

so that AAu and B&v are elements of the arcs of these curves. The vector p
being a function of u and v, we obtain additional relations connecting the

six scalars a', 6', c', a^, 6„ c„ by expressing that

^=l,(^")=li(^^^=^.- ("•>

Now, attending to (11.), we have for example, by (m.),

da=V(a)'d2*+ a),dv)a= (^c'-y6')dw+ (/3c,-y6,)dv, (vii.)

and the differentials of y8 and y are obtained by cyclically transposing

a, /5, y, a\ 6', c', a^, 6„ c,. Hence (vi.) at once leads to the three relations

^ + i?c'=0, ^^-10=0, Ab, +Ba'^0 (viii.)

obtained by equating the coefficients in

|^.a+ J(/3c,-76,)= '^/3+S(7a'-ao').

These three relations coupled with (iv.) give all that is necessary for the
investigation.

* Note that Vdg^-^ is not a perfect differential.
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To ascertain the meaning of tlie scalars, observe that the vector curvatures
of the curve u variable and v variable are (Art. 86, p. 134)

3a 1 _ fih'-\-yc' g/3 1 _ aa, + yc, , .

du' Aa~ A ' dv'Bfi' B ' ^ '^

so that by what we have shown A~^h' is the curvature of the normal section

through u variable and A~^c' is the geodesic curvature of the same curve.

For any curve traced on the surface, if

Ud/o= U(a^dM+ /3-6dv)= acos^+ j8sin^, cosMs= ild2*, sinM«= 5dv, (x.)

the vector curvature is

- yJJdpl (a'sin I - b'cos l)—j-+ (c(',sml-b^cos 0~"d~ n ••••(xi.)

which follows easily on substituting for du and dv in

d . Ud/3= (^cosl-a sin I) dl+ {(^{c'du+ c^dv) — y {h'du+ h^dv) ) cos I

+ (y {a'du+ a^dv) - a{c'du+ c,dv)) sin I.

Thus the geodesic curvature depends simply on c', c,, and the rate of

variation of the angle I which the curve makes with u variable. The normal
curvature depends on the four quantities a', a,, 6', 6,. The relation (xi.)

includes everything relating to the second differentials of the curve, and if

we write for the curve a'= Ud/o, y'=U . dUdp.d/)"^, y'a'= /5', we may, for

brevity, replace (xi.) by the relation

y = y cosm+ ya sin m, (xii.)

and we may determine the torsion and everything depending on third
differentials by differentiating once more.

Ex. 1. Determine the equations of the lines of curvature, and prove
Gauss's theorem that the measure of curvature depends on differentials of

the line element.
[If C and C, are the principal curvatures, p - C'~^y and p - C~^y are the

vectors to the centres of curvature, and expressing that these are stationary
for the moment, we have

Aadu + BfBdv - C-\a{h'du+ h^dv) - jB{a'du+ a,dv))=0,

and according as w^e eliminate the ratio du :dv ot C we have the equation of

the lines of curvature, and the equation of the curvatures,

Aa'du'^+ {Aa^-\-Bh')dudv+ Bh,dv^= 0, C^AB-C{b'B-a,A)+ a%-a,b'= 0.

By (iv.) and (viii.) we see that the product of the curvatures is a function
of ^, J5 and their differential coefficients.]

Ex. 2. Prove that when the curves u and v are lines of curvature,

b'^C'A, a,^-CA a' = 0, b,= 0, c'=-5-i^, c,=^-i^;

and show that

dC,_ {C'-C,) dB dC {C-C) dA
du B du' dv A d^v'

' AB \ov\B ov J ou\A du /

)
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Ex. 3. If th(

that in this case

where G is the geodesic curvature of any curve, and I the angle it makes
with the curve u variable.

[Here c'= 0, so that A is independent of v, and by a change of the
variable u we may put ^4 = 1,]

Ex. 4. Prove that the total curvature of any portion of the surface is

where d*S' is an element of the surface ; and where I is the angle the bounding
curve makes with the curve u variable, O is the geodesic curvature of the

bounding curve and ds an element of its length.

(a) Examine the case in which the bounding curve is composed of

geodesies.

(iv) Families of Curves and Surfaces,

Akt. 95. If p = tj(t; a,h, c, ...), (i.)

where ;/ is a given function of a variable parameter t and of

certain scalar constants a, b, c, etc., the equation represents a
family of curves, any particular member of the family being
determined by assigning fixed values to the constants a, h, c, etc.

If there are n constants, the family is said to be -n-way, or to be
of the n^^ order.

The curves of the family which touch a given surface or inter-

sect a given curve co^mpose a family of order n — 1.

If the given curve is p = r]-^(t-^), the condition of intersection

f](t; a, h, c, ...) = r}i{h) (n.)

is equivalent to three scalar equations, so that on elimination of

t and t^ from these, we are left with a scalar equation in the

constants a, h, c, etc., and thus one of the constants may be
expressed in terms of the remaining n—\.

If the given surface is f(p) = 0, the conditions for contact are

fM = 0, %^=0, (m.)

and on elimination of t, a relation connecting the constants is

obtained, so that a family of order n—1 touches the given
surface.

Art. 96. Expressing that an unknown surface f(p) = meets
a curve of the family at the extremity of the vector p in n
consecutive points we have

Svrj''^ -{- 2Sr]"<prj' -\- Sr]'(ptj" -^Sr}^<p2Wf]') = 0, etc., (l.)

1
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where the functions 0, (j)^, etc., are defined by the relations

di/ = 0dyo, d2,/=0d2p+ 0.2(dp, dp), etc (ii.)

The first of the equations (i.) is equivalent to three scalar

equations, so that the system of equations is equivalent to '?i+ 2

scalar equations. We can from these eliminate t and the n
constants a, b, c, etc., and the eliminant is a function of p, v, 0,

02, etc., and is equivalent to the differential equation of surfaces

met in n consecutive points by curves of the family.

In particular, the equation is equivalent to the differential

equation of surfaces generated by curves of the family.

Ex. 1. Find the differential equation of surfaces generated by parallel

lines.

[Here p = K + ta, Sra= 0, and the equation required is Sva=0, a being

a fixed vector and k being arbitrary.]

Ex. 2. Find the differential equation of cones having a common vertex.

[In this case p = a-\-tK, Si^k = 0, so that Si^(/3 -a)=0.]

Ex. 3. Prove that SVav0Vav = O is the differential equation of surfaces

generated by lines perpendicular to the fixed vector a.

Ex. 4. The differential equation of surfaces generated by lines which
meet the fixed line Y{p-/3)a = is SVvV(o-/?)a . 0. VvV(/)-^)a= 0.

[If p= K + tX is a generating line, S(K-^)aA= 0, SvX= 0, SA0A=O.]

Ex. 5. Find the differential equation of ruled surfaces.

[We have Si'A= 0, SA0A = O, Sk<f>2(>^X.)= 0, and the equation is obtained

by solving for A (Art. 74, Ex. 3) from the first and second and substituting

in the third.]

Ex. 6. Find the differential equation of surfaces generated by similar

and similarly situated curves.

[Here a generating curve is p=K-\-aa(t) where k and a are constants to

be eliminated and where a(^) is a given function of t.]

Ex. 7. The differential equation of surfaces generated by equal and
similarly situated ellipses is

SYYa/S. I/. 0. VYa^. v= (Sai^2+ s^v2)t

a and f3 being a pair of conjugate radii.

Art. 97. As in the last article, being given the scalar equation

of a family of surfaces involving n constants,

fip; a,6,c, ...) = 0, ....(i.)

we can determine the differential equation of a surface which at

each point is touched by some member of the family in as many
consecutive points as serve to eliminate the constants.

If only one constant is involved, only one surface is touched

at each point by a member of the family, and that is the envelope

obtained as the locus of intersection of consecutive members by
eliminating the constant a between

. /(p,«)= and §^^) = 0.. (II.)
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If two constants are involved, the conditions for contact with
some unknown surface at the point p are

v = xv^, f(p;a,b) = 0, (iii.)

where v is the normal to the unknown surface and pq the normal
to the surface of the family. The first equation, on elimination

of the unknown scalar x, is equivalent to two scalar equations,

and between these and the second we can eliminate a and 6, and
we obtain the differential equation of the touched surface as a

function of p and v, homogeneous in v.

When the family contains three parameters, we express that

the surfaces touch at two consecutive points, and we have

V— xvq, (pdp = X(pQdp -\-dx.vQ = 0, f{p ; a, b, c) — 0, Si/dp = 0. (iv.)

We can eliminate dp and replace the equations by

v= xvq, Sv((I) — X(Pq)-'^v = 0, f{p; a, 6, c)= 0;.. (v.)

and these equations are equivalent to five scalar equations from
which to eliminate x, a, b and c.

Observe that we find two directions dp for contact according

as we substitute one or other of the values of x given by the

scalar equation (v.) in the second equation (iv.)

It is not hard to see that each additional condition of successive

contact affords one additional scalar equation in x and the

constants. In fact if we attend merely to the new unknowns
d^p and d'^'x introduced in d^-\^dp — X(pQdp-\-dxi/Q) = and
d"*"^Si/d/) = 0, we see that they occur in the forms

d>+ (0-ic0o)-\.d'"^+ etc. = O, Si/d>+ etc. = ;

and when we eliminate the vector d^p, the scalar d^x disappears

also by (v.). The preceding vector condition

d^ -
X(l>dp- xcp^dp+ dxi^o) =

serves to eliminate d'^~'^x, and so on.

The conditions of contact at n— 1 successive points serve to

eliminate the n constants, and the result is the differential

equation of surfaces touched at each point by some one member
of the family in n—\ successive points. In particular, the

equation is the differential equation of envelopes of the family
obtained by replacing the n constants by arbiti^ary functions of

a single constant.

When the family of surfaces is given in terms of two para-

meters t and u, — // 01 • // ^ /. \ r\n \

we have v^xYri'ri^, dv— (t>{ridt+ r}^du) = xdYriri^-\-y^r{fj^dx,....{Yii.)

and on direct elimination of d^, du and dx,

Sv.W -xY{rl%-^r,'rt;)-][cpr,^--xN{riX+ r;ri,;j\ = 0. ...(VIII.)
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The next differentiation introduces dH, d^u and d^x, and these

being eliminated by an equation analogous to (viii.) we use (vii.)

to get rid of d^, du and dx.

Ex. 1. Prove that for the envelopes of a family of spheres,

±'UvR = p-K,
where k is the vector to the centre of a sphere and R the corresponding
radius.

Ex. 2. The differential equation of envelopes of spheres of constant

radius whose centres lie on a curve on the surface //o=0 is /(/o ±Uvi?)= 0.

Ex. 3. The differential equation of the envelopes of spheres having their

centres on the ellipse p= a cos t+ fSsint is,

Ex. 4. Find the differential equation of developable surfaces.

Ex. 5. Show how to find the differential equation of the envelopes of a
surface carried parallel to itself.

[Take p= 8+rj(t, u).]

Ex. 6. Find the envelopes of a rotated surface.

[Take p= q .7j(t,u).q~^.]

Art. 98. A differential equation of the first order presents

itself in the form w \ _ q /j \

homogeneous in p. For any variation of p and p subject to this

condition, d.F(p,v) = STdp-{-S,^d,= 0, (ii.)

where t and /ul are determinate functions of p and v. If the

equation has a solution, there must be some scalar function of

P^^^^^^^ d.fp^nSvdp, (III.)

and for any arbitrary differentials of /o, if dn= Sa-dp,

d'dfp = nSd'vdp+ nSvd'dp+ Sa-d'pSi/dp

= ddyp = nSdpd'p+ nSvdd'p+ S(TdpSvd'p,

so that (compare Art. 91)

S (TidV- a-Svd'p+ vSa-d'p) dp- nSd'pdp= ; (iv.)

and this general relation must include (ii.) as a particular case.

Hence for some differential d'p satisfying Spd'p= 0, we must
have XT^nd'p+pScrd'p, XfA= -nd'p, (v.)

and from this we have the equivalent of Charpit's equations

"' * dp Ypdp o J /^ / \^= - v~' Si/dp = 0. (VI.)
JUL \PT
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EXAMPLES TO CHAPTEE X.

Ex. 1. Determine the equations of the osculating circle and osculating

helix of a curve in terms of the vectors a, /?, y and the scalars a-^ and c^

corresponding to the point of contact, and find the deviation of the curve

from the circle or helix.

Ex. 2. Show that the vector to a point on an ellipsoid may be expressed

in the form
p = acos^ + Tsin2^ where Tt = 6, SAt= 0,TA= 1,

the vectors A and a being constant but t being variable.

(a) A tangential vector is

d/o= ( — a sin w + t cos u) d^i+ At sin udt,

and the equation of the tangent plane is

Svp= b^SXa where v=VAT(asin?i-TCOs^).

Ex. 3. The differential equation of a geodesic on the quadric Sp<f)p+ l=0
is S(f)pdpd^p= 0.

(a) This equation, which expresses that cfip, dp and d^^ are linearly

connected, may by the aid of the differentials of the equation of the quadric

be replaced by
SdpdV_,, Sdp4,p .

and operating by Scftdp an integrable relation,
.

Sd^c^d/Q Sdpdy ^dp4>p_
^dpfdp dp'

"^
<l)p'

~ '

is found which affords the integral

Sdp<f>dp.cf)p'=C.dpl

(b) The geometrical interpretation is that PB is constant along the

geodesic, where F is the central perpendicular on the tangent plane and
where Z> is the diameter of the quadric parallel to the tangent to the
geodesic. (Compare Ex. 14, p. 287.)

Ex. 4.* A unicursal curve of order n is represented by an equation
of the form <"„„„„ 'h/ ^^^

p= \(^Oi «!, a2"'<^nit, I)
.

(«o, «i, a2...ajt, l)"

and in general this equation may be transformed into

P— Po+ ^i jr f>

and the curve may be described as the locus of the mean centre of corre-

sponding points on n homographically divided lines.

(a) The equation of the asymptotic tangent parallel to /?i is

Ex. 5. Find expressions for the curvature and torsion of a line of

curvature on a quadric in terms of the elliptic coordinates of Art. 84.

Ex. 6. The vectors p= d(t) to points on a curve are transformed by the

operation of a linear vector function
(f>.

Compare the curvature and torsion

at corresponding points.

*See Proc. P. I. A., 3rd Series, Vol. iv., 1897.
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Ex. 7. (a) If a, /?, y and 8 are vectors from a common origin to four
points A, B, c and d, it is always possible to determine four scalars a, 6, c

and d, so that aa + b0-\-cy+ d8 = 0.

(b) If the sum of these scalars is zero, the four points lie in a plane.

(c) It is also possible to determine a second set of scalars so that

a'a-i + 6'^-i + c'y-i + <^'S-i = 0.

(d) If the sum of this new set vanishes, the points lie on a sphere passing
through the origin.

(e) The equation of this sphere may be written in the form
Sp-i (iS-iy"'+ r~'«~' + a-^/5-i)= Sa-i/?-iy-i.

(/) If it is possible to determine a third set of scalars so that

a"ai+ b"l3^ + c"yi+ d"8^= 0,

the four vectors are edges of the right circular cone

SU/)(U .f3y + V. ya+U . a/5)=SU . af3y.

(g) If the additional condition is imposed that the sum of the scalars of
this third set vanishes, the four points lie on a surface whose equation may
be written SA^*= 1,

A being a constant vector.

(h) Discuss briefly the nature of this surface. (Bishop Law's Premium.)

Ex. 8. The differential equation of surfaces generated by lines of the
complex (Art. 36, Ex. 4, p. 40)

/((t,t) =
may be found by eliminating o- and t between this equation and

O-= V/0T, SvT= 0, St<^t = 0.

(a) For the linear complex S{axT+ (3r)= 0, the equation is

(b) Lines common to the two linear complexes

S(ao-+ ^T)= 0, S(yo-+ 6T)= 0,

generate the surfaces whose differential equation is

S.v(Vap + /?)(Vyp+ S) = 0.

(c) Find the differential equation of surfaces generated by lines of the
congruency

/(o-, t) = 0, S(ao-+ ^T)= 0.

Ex. 9. If the vector ^8 is a given function of a variable unit vector a,

the equation Y(^_^)^_0

represents a congruency of right lines.

(a) If d^= ^da determine the meaning of the several terms in the equation

<^da + .rda + ad.r= Pada.

(b) A line of the congruency is intersected by consecutive lines at two
focal points p= (^+ xa where .a? is a root of the quadratic

^a{(^-irx)-^a= 0, or Sa(.^2_^^Xo+Wa-Sea2= 0,

€ being the spin-vector of <^ and ^^ being the self-conjugate part.
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(c) The points of closest approach of consecutive rays to the ray p= l3+ xa
lie between the extreme points determined by the condition that SUda^Uda
may be a maximum, and the corresponding values of x are the roots of the

quadratic

Sa(^Q+ ^)~ia= 0, or Sa(^'2 + ^Xo+ >//'Q)a= 0.

{d) The vectors of shortest distance at the extreme points between the

ray a and its consecutives are mutually perpendicular ; and if these shortest

vectors are parallel to the unit vectors a and a,, the extreme points are

determined by ^'= Sa,<^a, and x=^a'4>a'.

(e) If the vectors a, a' and a^ are in positive order of rotation so that

a'a/= a5 Sa'<^a,= - Sa^cf>a'= - Sea
;

and if the shortest vector at the point corresponding to x makes the angle u
with a' so that u^da= a cos u+ a^ sin u,

the scalars x and P are connected with x' and x^ by the relations,

x=x'cos^u+x^sm^u, P=Sea + (x^-x')sinucosu.

Ex. 10. A circle may be represented by means of a pair of vectors (/c, X)
since its equations may be thrown into the form

T(p-K) = TA, SA(/)-k)= 0;

and an equation such as /(k, A)= 0,

where / is a general function, may be regarded as representing a family of

circles.

(a) In like manner an equation such as

/(a, f3,y)=0 where Sa^=0
represents a family of conies, y being the vector to the centre of one of the
conies and a and ft being its principal vector radii. (Compare Ex. 11, p. 103.)

Ex. 11. The general surface generated by a variable circle (k, A) may be
represented by

P= k + Xt where SAt= 0, Tt= 1,

the vectors k and A being functions of a single parameter and the auxiliary

vector T being arbitrary so far as the conditions allow.

(a) If P is a scalar analogous to the parameter of distribution of a ruled

surface, ^t xdA-dKF—= dK + d.AT. Hence dr= -75 r-,
T Ft- A

p_ S(dK-TdA)A_ S(dA+TdK)A
SrdK ^ SrdA •

(b) These expressions for P lead to four values of the vector t which
determine points at which neighbouring elements of successive circles

approach most closely or are most widely separated.

(c) If successive circles intersect in one point

T(VdAASdAA+Vd/<ASdKA)=T. ASAdAdK

and the vector to the point of intersection is

VdAASdAA + Vd/cASdKA
p= K+-

SAdAdK
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{d) If successive circles intersect in two points, the vector just found
becomes indeterminate, and

VdAASdA.A + Vd/cASdKA=0

;

and when this condition is satisfied, the surface may be generated by the
motion of the sphere,

(e) In the general case, the equation of a normal to the surface is

V.(p-K-AT)VT(dK+VdA.T)= 0;

and when this is expanded we obtain two scalar equations which combined
with the equations of condition enable us to eliminate r, so that we find the
equation of the surface generated by the normals along the circle (k, A) to be

S(p-K)dK-SAdA±S(/odA-KdA-d/cA)UV(p~K)A=0.

This surface is of the fourth order, and normals at the extremities of

diameters of the circle intersect in a nodal conic.



CHAPTER XL

STATICS.

Art. 99. If a is the vector to the point of application of a
force which is represented in magnitude and direction by the
vector p, the moment of the force with respect to the origin is

Va/3—the vector area of the parallelogram determined by «
and /3 ; and the moment about the extremity of the vector y is

V(a — y)|8. The force may be replaced by an equal force /5 at

the origin, and a couple Va^S; or by an equal force ^ at the

extremity of the vector y and a couple V(a — y)^.
For any number of forces, the quaternion quotient of the

resultant vector moment at the origin by the resultant force is

(Elements, Art 416(11))

q= yr.^ =p+^ where p = Sg, CT= Vg; (i.)

and because 5:Va/3=pS^+ sT2/3=pS/3+ Vp2/3, (ii.)

if p is the vector to any point on the line represented by "
|

ypi:p= ml^ = (2/3)-W.2/31Ya/3, (III.)"

we may replace the system of forces by a force 2/3 acting along
the line (iii.) and by a couple pll/3 having its axis parallel to

that line. This is the reduction to Poinsot's central axis.

The system of forces constitute a wrench upon a screw ;* the
scalar p, which is independent of the origin, is the pitch of the
screw, and the vector V5 is the perpendicular from the origin on
the axis of the screw—Poinsot's central axis.

If the resultant reduces to a single force, p is zero or

S2Va^(S^)"^= 0; and if they reduce to a couple 2^8 = and p
is infinite. If the forces equilibrate

2/3 = 0, 2Va/3= (IV.)

*Sir Robert S. Ball, Treatise on the Theory of Screws, Cambridge, 1900.
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Hamilton uses a second quaternion

^=2/8=^+^= ^+^' ^^-^

and the scalar of this quaternion is the pitch wjiile the vector

terminates at a point which is independent of the origin—the

Hamiltonian centre of the system of forces. This point is

evidently situated on the central axis (m.)-

The quaternion a/3 is called by Hamilton the quaternion
moment of the force /S with respect to the origin. Its vector

part is the moment of the force and its scalar part is minus the

virial. We shall write for any number of forces

2a^ = />i4-m", 2^= X, (VI.)

so that we have

jui = Yi:a/3=p\ + Tn\, y = zn,+ m"\-'^, (VII.)

where /x is the resultant vector moment at the origin and where
m" is minus the resultant virial at the same point. The plane

of no virial is represented by

S2(a-yo)^= or SpX = m"; (viii.)

and Hamilton's centre is obviously the intersection of this plane
and the central axis.

Ex. 1. Vectors (a) are drawn from a variable origin to the points of

application of forces {0). The equation

2Vay8=
impHes equilibrium.

[If the vectors Uq are drawn from a fixed origin to the points of appli-

cation, we must have separately 2^= 0, 2Vao/?==0 (Elements, Art. 416).]

Ex. 2. Forces act at the vertices of a triangle, in its plane and pro-
portional and perpendicular to the opposite sides. Prove that they are in

equilibrium.

[If a, /? and y are the vectors from a variable origin, the forces are
v{0-y), ^{y-o-)) v(a-j8) where j/ is a vector perpendicular to the plane of

the triangle. The moment formed as in the last example vanishes identically
because Yavl3=Y/3va, etc.]

Ex. 3. The conditions of equilibrium of a rigid body may be expressed
by the equation 2S/5da= 0,

which contains the principle of virtual velocities (Elements, Art. 416 (17)).

[For any possible small displacement of the body da=S4-Va>a where 8
and (J) are arbitrary. Hence 2yS= 0, 2Va^=0.]

Ex;. '4. The moment of the force ab about the line cd is six times the
volume of the tetrahedron abcd divided by the number of units of length
in CD.

[The vector moment at the point c is V . ca . ab and the component along
CD is - S(UcD . V . CA . ab)= - S . CD . ca . abT . CD~^]
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Ex. 5. A force of unit intensity acts along the line Y{p~a)/3= 0. Its

moment about the line Y(p — a')/5'= is — S(a — a')U^/3'.

Ex. 6. If three forces are in equilibrium, they must be in the same
plane.

[Operate on the condition V(p-a)^+V(/)-a')/3' + V(/o-a")y8"= by
S(/o - a) and put p= a where we find S(a' — a) (a' - a")^"= 0.

Ex. 7. If four forces are in equilibrium, their lines of action are

generators of a hyperboloid.

[One method of proof (Chap. VIII., Ex. 10, p. 103) is to express the four

vector moments Va„/?„, etc., in terms of the four forces by means of a linear

vector function, so that Va„/?„= (/)^,i+ w. The vector w is zero because

2Van^n= 0, 2^„=0, and therefore the equation of a line of action is

p= <t>fSnl3n-^ + j;fin- (See Art. 79, p. 116.)]

Ex. 8. Eesolve a wrench into forces along the edges of a tetrahedron
ABCD.

[If fx is the moment and A the force of the given wrench at the fixed

origin of vectors o, the moment at the point p is

/x -V . OP . A= Sj^abV . pa . ab

where t^B, etc., are scalars proportional to the forces along the edges. Take
the point p at d, and

ju,-Y.OD. A= ^AB- V. DA. ab4-«^bcY.db.bc + #caV.dc.ca

serves to determine three of the unknown scalars. Operate by S . DC and

^AB.S.DA.DB.DC= S(/X- V.OD . A) DC, Or ^ab.(aBCD) = S .CD ./x+ S.oc.od.A.]

Art. 100. To reduce a system of forces to two forces, let

JUL and X be the resultant couple at the origin and the resultant

force of the system, and assume

^ = Va/3+ Va'/3', X = /3+ /3', (I.)

where ^ and /3' are the two forces and a and a the vectors to

their points of application. Hence

/3'= X-^, M = V(a-aO/6+ Va'X; (ll.)

and from the form of the second equation, it is obvious that if

two of the unknown vectors a, a, /3 are suitably assumed, the
third may be regarded as the vector to a point on a determinate
line. But a condition must be satisfied, for on operating in turn
by S(\— /3) and S{a— a) we have

S(X-/3)M = SXa^ and S(a-a)^-=SaaX (ill.)

so that if any one of the three unknown vectors is assumed
(say a) the other two may be regarded as terminating on
definite planes. Suitably selecting either /3 or a in accordance
with (ill.) (which is a consequence of (ii.)), the remaining vector

is constrained by (ii.) to terminate on a line.

Ex. 1. A rigid body is acted on by any number of forces. It is required
to equilibrate the body by two forces whose points of application are
situated on given lines.
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[If ^ and ^' are the required forces and V(p-a)^= 0, V(p-a')j8'= the
equations of the given lines, we have

where x and x' are scalars. Hence

and this equation of condition establishes a homography connecting the
points of application.]

Ex. 2. A framework is composed of rods jointed by smooth hinges.

Three of the rods, a^a^, A^Ag and A4A3 terminate at a point A4 and are acted
on by given wrenches. Determine the reactions at the joints ; it being
supposed that the three rods are not coplanar.

[Let (/x,„i„, Xrnn) rcprescut the wrench applied to the rod a,„a„, the origin

of vectors being taken as base-point, and let f^rnn be the reaction of the joint

on the rod at the point a^. For equilibrium of the rod a^a^,

M4i-^M4i + V(a4-^)^4i + V(ai-/,)/?i4=0,

and putting p^a^, this gives

/Z41 - VaiA4i + V(a4 - ai)/34i= 0,

or, for some scalar x^^,

/^4i= (/^4i - ^^1X41 + ^4i)(«4 - ai)~^

For equilibrium of the joint A4, we have Ai+A2+As= ^j ^^

2l^(/^4« - ^anA4n)(a4 - ttn)"^ = - ^Z-^^X^ni^i " ^n)"^

and from this vector equation the three scalars x^n can be found.]

Ex. 3. A rigid body is in equilibrium under the action of an impressed
system of forces (jjl, A) and the tensions of two strings a'a and b'b attached to

points a' and b' in the body and to fixed points a and b. Show that the
forces exerted by the strings on the body are represented by

,(„_„-)=.M±^', ^(0_^)=M+^«
where x, y and t are scalars which may be determined by expressing that
the lengths of the lines a'a, b'b, a'b' and ab are given, and where a, ^, a' and
/3' are the vectors from the base-points to the points a, b, a' and b'.

(a) What condition is implied in these equations ?

(5) If «, 6, G and d are the tensors of the vectors a'a, b'b, a'b' and ab,

respectively, show that the scalar t satisfies the equation

c= T{aU(/>i -I- Ay8+ + &U(/x -f- Aa -I- + d).

Art. 101. The resultant quaternion moment (Art. 99 (vi.))

for an arbitrary base-point (the origin of the vectors a) of a

system of forces (^8) acting at points fixed in a rigid body is the

first quaternion invariant of the linear vector function

0/0= 'EaS/Sp, (l.)

the first scalar invariant of this function being minus the

resultaat virial (w,'' = SSa/3), and double the spin-vector being

the resultant vector moment (/x = 2Va^).

* That is the invariant - (pi . i-<pj .j -(pk. k. Compare Art. 67, Ex. 7, p. 97.
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If the forces receive a common conical rotation round their

points of application so that each vector /3 is replaced by qBq~^,

the function
(f)p

changes into (piq'^pq)', and if the body is

rotated so that a becomes qaq~^, the function becomes q{(pp)q~^'

The results of Art. 70 show that there are four rotations

applicable either to the body or to the forces which render the

function self-conjugate ;'^ and in this case the resultant is a

single force passing through the origin. These four positions

of the body relative to the forces are called the initial 2)ositions.

If \( = 2/3) = 0, the resultant is a couple for all relative

positions. If the forces are in astatic equilibrium, the couple

(as well as the resultant force) must vanish for all rotations ; but

this can only happen when the function cp vanishes identically

because a function such as q{<pp)q~^ cannot be self-conjugate for

all quaternions q. Thus the necessary and sufficient conditions

for astatic equilibrium are

^ = 0, X = 0; (II.)

and these are equivalent to twelve scalar relations connecting

the forces and the points of application.

In general reduction of the function ^ to a trinomial form

0/0 = yiSXip+ 728X2/)+ 738X3/), Xi+ X2+ X3= X, (ill.)

in which X^ and Xg are arbitrarily assumed, corresponds to the

reduction of the system of forces to three forces X^, Xg and Xg

astatically equivalent to the given system ; and it is easy to

see that the points of application of these forces, the extremities

of the vectors 7^ = ^VXgXg : 8X^X2X3, etc., are fixed relatively to

the body and lie in the central plane

Sp\lr'X =m or 8yo0'-iX = l (iv.)

Reduction of the function to the standard form of Art. 70 gives

a particularly simple set of equivalent forces or couples.

The vector 0X is obviously fixed in the body, and when the

origin is transferred to the extremity of the vector . X ~ ^ the

linear function (which we continue to denote by 0) corresponding

to this special origin—the astatic centre—satisfies the condition

<j>\ = (v.)

As one root of ^ is now zero, the function is reducible to the

binomial form, and the auxiliary x/r function is of the type

\frp = \SKp (VI.)

where ac is a vector fixed in the body. The equation of the

central plane is now 8/c/o = 0.

* These are the rotations which convert i', f, k' of the article cited into

+ *> +i> +^'» +*> ~ij ~^; ~*j +ij -^; or -i, -j, +k. Compare the foot-

note to the article cited.
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In addition to the equations (v.) and (vi.) we have

<^'A= VA/x and ^/x= ^'ju,= V/<A ; (vii.)

the first is obvious because [x is double the spin-vector and the second follows
from Art. 68 because —

<f>ix is double the spin-vector of i/r. These relations

coupled with the expression

fjL=p\ + Yrjk, (vTii.)

for the moment in terms of the pitch p and the vector 97 from the astatic

centre to a point on the central axis of the forces in any position enable us
to deduce all the theorems of astatics. We first remark that the function (f>cf)'

is Jived relatively/ to the body (or to the vectors a) and that the function <f)'<^ is

fixed relatively to the vectors 13 (or to the directions of the forces).

In order to determine the arrangement of the central axes relatively to
the forces, operate on (viii.) by the function

(f),
and by (vii.) we find

<^Vt7A=VKA, (IX.)

so that T<f>Y7j\=TYK\ or SY7]k<f>'cf>YrjX= (VKX.y ; (x.)

and therefore relatively to the forces the central Ojxes compose a coaxial family
of similar elliptic cylinders whose linear dimensions are proportional to the
cosine of the inclination (TVUkA) of the central plane to the axes whose
direction (UA) is of course fixed relatively to the forces.

The arrangement of the central axes in the body is determined by the
equation

<f>'X= YXY7jX (XI.)

obtained by operating on (viii.) by VA and attending to (vii.). Taking the
tensor

TV^A=T<^'UA=v/(-SUA<^<^'UA); (xii.)

and the locus of central axes having a given direction UA relatively to the body
is a right circular cylinder whose radius is the reciprocal of the parallel

radius of the elliptic cylinder

T4>'p=T\ or Sp(j>cf)'p= X^ (xiii.)

To each generator of a cylinder (x.) corresponds one of the cylinders (xii.)

which is traced out by that generator when the forces are rotated round the
vector A. In terms of the vectors a and r of Art. 36, Ex. 4 (rjl A), we may
replace (xii.) by

TATo-=T<^V, (xiv.)

and this equation represents a complex of the second order

—

the assemblage

of lines in the body which become central axes by suitable rotation of the forces.

We shall now determine the pitch corresponding to each central axis.

Operating by </>' on (viii.) we have by (vii.)

pct>'k+ cl,'YrjX= YKX, (XV.)

and operating on this by S^'A or SVA/x, or SVAV^A we deduce

pT<t>'X^-SX<f><f>'Y'qX^TX^SKr}X (XVI.)

This equation gives p in terms of the vectors determining the central

axes. Again we obtain an equivalent expression by taking the tensor of

(xv.)j .a'^d on replacing A by t and YrjX by a- the result is

p2T<^'T2-2j0ST<^</)'o-fT<^'o-2= TV/CT2 (XVII.)

This represents a complex of the second order and the lines common to

the complex (xiv.) compose a congruency of the fourth order and the fourth

J.Q. L
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class

—

the assemblage of lines in the body which become axes of screios of given

pitch for suitable rotation of the forces*
Since (xvi.) is linear in tj, it represents a plane when the direction of A

is given which cuts the cylinder (xii.) in two axes corresponding to the
given pitch. The plane touches the cylinder if

^T(^'ATA2=±TVA(</)(^'A+ kTA2), (xviii.)

and this relation determines the limiting values of the pitch for a given
direction UA.

The function ^tj/o corresponding to an arbitrary base-point—the extremity
of the vector i^-m

<t>r,p
= ct>p-rjSXp (xix.)

because (fip is of the form 2aS/?/o. The function ^rj(/)Tj' for this base-point is

'p= <f)(f>'p-TX.^.7]S7]p ;
(xx.)

and supposing u^ to be a latent root and a to be a unit vector along the
corresponding axis, it appears on inversion of the function cfxp' — v? that the
latent roots {u^, u'^, u"^) of <^r)4>il are parameters of the quadrics of the con-

focal system (fixed in the body)

S/)(</)(^'-?62)-lpTA2=l (xxi.)

which pass through the extremity of rj, and that the axes (a, a', a") of the
function are the normals to these confocals. Eeduction of </>,, to the
standard form of Art. 70 gives

<^nf>
= uaSf3p+ tc'aS^'p+ u"a"S(3"p (xxii

.

)

where the unit vectors (3 are likewise mutually perpendicular so that the
system of forces may be replaced by A acting at the extremity of 97 and by
three couples (such as that due to the unit force +B acting at the extremity
of tj + ^ua and — ^ acting at the extremity of r) — ^ua) whose arms (ua, u'a,

u"o!') are mutually perpendicular as well as the forces (/?, /?', (3").

The parameters of the confocals (xxi.) touched by an arbitrary line (a, r)

are the roots of the quadratic equation (Art. 83, Ex. 2, p. 124).

St { f'ylr
- u^{M" - <^<^')+^^t+ So-(<^</)' - v?)a- . TA^=

where M" is the first invariant of </)</>', observing that in general the
i/r function of ^^' is V^'i/^ ; or of the equation

^4TT-2_^2(J^/-XT2-T<^'T2-f To-2TA2)+ TVrT2+ T</)VTA2= ; (XXIII.)

and when the line belongs to the complex of central axes (xiv.) the equation
reduces by (xvii.) without much trouble to

u'^-M"u^+ M'= p^T4>'VT^+ ^p^r-^4>^'(T (xxiv.)

where J/'(= Tk^TA2) is the second invariant of (^<^' or the first of \/r'i/r. This
shows that the central axes touch confocals having the sum of their parameters
constant and equal to M" ; and in particular we have Minding's theorem for

jo=0 that the lines of action of single force resultants intersect the focal conies

of the system (xxi.) since the parameters of the touched confocals are in this

case the finite latent roots of <f)(fi' and the focal conies obviously correspond
to these parameters. The theorem respecting the constant sum of para-

* The former equation (xvi. ) in term^ of r and a is

pT</)V2 - Sr00'(T = TXTrS/fo- ;

and on rationalization this is seen to represent a complex of the fourth order, and
it may be shown that coupled with (xiv.) it reduces to (xvii.) affected by the factor

T0't2.
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meters is otherwise deducible from Art. 83, Ex. 3, for the cone of lines of

the complex (xiv.) through the extremity of the vector rj is expressible in

the form
ST{<j><f>' -Trj'-TX^-7jTX\Srj)T= (xxv.)

Moreover (Art. 83 (x.)) this is the reciprocal of the tangent cone to the
confocal (xxi.) whose parameter is u^— Trj^TX^. According as the tangent
cone becomes more and more obtuse by variation of the vector rj and finally

becomes a tangent plane, the reciprocal cone becomes more and more acute
and finally coincides with the normal to the quadric, and the locus of such
points is the surface

Srj(<f>cf>'-T'n^X^)-h]TX^= l (xxvi.)

This surface is a quartic analogous to Fresnel's wave-surface, and its

equation may be reduced to the form

. rp TVkt^ TYktj _ Tk
^^~T^'r) Tcf,' . k'Wk7j~Tcj,'U . k-Wkt]'

^xxvii.)

remembering that (f)'K=0. In this form it is apparent that the surface
consists of a system of circles concentric with the astatic centre, coplanar
with the vector k and of radius proportional to that of the elliptic cylinder
(xiii.) which is parallel to the radius in the central plane. For points inside

this surface the cones of axes are imaginary.
The boundary of the region containing the feet of central perpendiculars

on the axes has been investigated by Tait {Quaternions, Art. 403).

Expressing that Tt; is a maximum when Ur/ is given and when t is

subject to the conditions (xxv.)

Sr?T=0, St((/)^'-T7/2TA2)t= 0,

the equation of the boundary is found to be

S7;(</)<^'-T7?2TA2)-i77=0; (xxviii.)

and this represents a surface of the sixth order analogous to the inverse
of a Fresnel's wave-surface, and on expansion it afibrds a quadratic in Hrf
corresponding to any given value of Ut/ whose roots are the limiting values
of the squares of the perpendiculars.

Ex. If vectors are drawn in the body from an arbitrary base-point to
represent the resultant moment, the locus of their extremities is an ellipse

when the forces receive all possil3le rotations about a given axis."*

[Here ii=Y^aqfiq-^ = Y^a{\+ti)^{l-{-tt)-'^ where t is the tangent of
half the angle of rotation and where i is a unit vector along the axis of
rotation, and the form of this equation establishes the theorem.]

Art. 102. The resultant of any system of forces has been
reduced in Art. 99 to a wrench which may be denoted by the
symbol (/x, X) where

^l=Jp\+ Yri\ (I.)

is the resultant moment with respect to the origin, where p is

the pitch, where ri is the vector to any point on the axis and
where X is the resultant force. The wrench {tfjL, tX), where t is

any scalar, has by (i.) the same pitch and the same axis as (//, X).

It is therefore said to be a wrench on the same screw as (jul, X)

and it may be denoted by ^(/z, X). The intensity of a wrench is

*See Joly, Trans. R.I. A., Vol. xxxii., pp. 218 et seq.
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the magnitude of a resultant force (TX), and the wrench {tix, t\)

has ^-fold the intensity of (/j., X).

It is often necessary to compound wrenches situated upon
different screws, and we shall investigate the simplest expression

for the wrench

which is the resultant of three wrenches of arbitrary intensity

situated upon three given screws.* Introducing a linear vector

function determined by the three conditions (Ex. 9, p. 103)

^1 = <P\, M2=0^2» M3 = ^^3 ("!•)

we have /x = ^X if iuL = l^t-^iuL^ and \ — ^t^\; (iv.)

and thus (0X, X), in which X is arbitrary, is the general expression

for a wrench that can he compounded from wrenches on three

given screws, or conversely, that can be resolved into wrenches
on the given screws.

To reduce the problem to its simplest form, let e be the spin-

vector of
(f)
and let 0o be the self-conjugate part ; then

^= VeX+ ^0^ = ^eX- ai^iX - bjSjX- ckSkX (v.)

where a, h and c are the roots of <pQ and where i, j and k
are the corresponding axes. Thus the wrench (jul, X) may be
compounded from the wrenches (Yei+ai, i), (Vej+hj, j),

(Yek+ ck, k), situated on screws whose axes i, j and k are

mutually rectangular and which intersect at the extremity of

the vector e. The corresponding pitches are of course a, h and c
;

the latent roots of the self-conjugate part of the function 0.

The pitch of the wrench (0X, X) and the vector perpendicular
on its axis are respectively (Art. 99)

i9
= S0X.X-i, t:T= V95>X.X-^; (VI.)

thus p is the reciprocal of the square of the radius of a quadric
and the vector cy terminates on the surface represented by

s^+i=«' (-^•)

because Vc70'trr
|| X and therefore Tn= Y(j)Yz;y(f)'zn{Yzj<p'7n)-'^; and

this surface is a quartic with three intersecting double lines

—

the axes of 0'. (Steiner's quartic surface.)

When the origin is taken at the extremity of the vector e, the
function is self-conjugate. This point is the centre of the
three-system of screws. In terms of the pitch p and the vector rj

from the centre to any point on the axis of a screw of the
system,

At= pX+ V;?X = 0X =0% (viii.)

* See Joly, Trans. B.I. A., Vol. xxx., Part xvi., and Vol. xxxii., Part viii.
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so that X is an axis and p the corresponding root of the function

(pp— Yrjp. The latent cubic of this function is (Art. 68, p. 98)

ST]{(f)—p)r] = m—pm'+p^m"—p^; (ix.)

and as rj varies, this represents a quadric surface—one set of

generators consisting of the axes of screws of given pitch which
belong to the three-system. Three axes pass through an
arbitrary point, and the sum of the corresponding pitches is

constant and equal to the first invariant of 0. Two axes lie in

an arbitrary plane Sa>y+ 1 = 0; their directions (compare (vi.))

are determined by
Sa\ = 0, Sa95>X\-i4-l = 0, (x.)

and the corresponding pitches are the roots of

Sa(V^~pX+2>^)«= l (XI.)

which is the condition that the plane should touch a quadric (ix,).

In order to reduce to a canonical form the two-system of

wrenches compounded from two given wrenches (/x^, \) and
(yU2, X2), we assume in conformity with the foregoing a function

(p which satisfies the relations

0Xi = ^tp ^\ = jUL^, ^YW= VeVXiXg (XII.)

where e is the spin-vector of cp. The function (0 — Ve)p w^U then

be self-conjugate and will have a zero root, VX^Xg being the

corresponding axis, and it will be expressible in the form
-aiSip-bjSjp. We have (Art. 27, p. 25)

(jyp= /X1SX2 (VX1X2) "V— ^2^^! (^^1^2) "V
-f YeVXiX^S (VX1X2) - V> (Xlll.)

and the spin-vector is deducible from the relation

2e= V{(^,X2-Mi)(VXiX2)-n+V6VXiX2(VXiX2)-i.

Operating by SVX^Xg we find

2SeyXiX2 = S(^i\~ ^^2^1)

which gives

e = V{(^,X2-/X2Xi)(VXA)-^}-KVXiX2)-^S(^,X2-M2Ai)J

Taking the origin at the extremity of the vector e, a wrench

of unit intensity compounded from the two wrenches is deter-

mined by

^ = (p\=ai cos ui-bj sin u=p{i cos u+j sin u)-\-Yr]{i cos% -hi sinu),

\= i cos u-\-j sin u; (xiv.)

whence the vector equation of the cylindroid—the locus of the

central axes, and the equation for the pitch are

r] = (b— a)k sin u cos u+ t{i cos u+j sin u), p= a cos^u -\- b sin%
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where u is the angle the axis makes with the vector i. The
scalar equation of the cylindroid is found on elimination of u
^O be TYW8kr}= (a-h)8ir}Sjr} (XV.)

To show that in general a wrench may he resolved in one and
only one way into components on six given screws, or to reduce
any pair of vectors /j. and X to the forms

6 6

lUL^Xt^lUL^, X = 2^iXp (XVI.)
1 1

where the vectors /m-^... /ulq and Xj . . . Xg are given, we assume in

the first place

iuin= (pi\n, (^ = 1,2,3); iuL,,= <p2\n, (^= 4, 5, 6); . . .(xvn.)

and writing ^-^X^+ 1^\+ 1^3X3= r^ ^4X4+ ^5X5+ tQ\= Tg • . .(xviii.)

we have /m = ^-^t-^+ ^2'^2' ^ = "^i+ ^"2
5

or Ti= (0i-02)"Hm-9^2H T2 = (9^2-^i)"Hm-0iA) (XIX.)

Thus the vectors tj and T2 are generally determinate and the

scalars t follow from (xviii).

Ex. 1. The locus of feet of perpendiculars from any point on the
generators of a cylindroid is an ellipse.

[This is evident from the form of the equation (see Ex. 7, p. 64)

CT= V(/>4 + ^jU2)(Ai + a2)-i.]

Ex. 2. Find the locus of intersection of screws of the three-system

lJb=(f>X. whose axes are coplanar with the origin.

[If ix= (f)X=pX.+ Y7]X, ix'= <j>X! =p'X-\-YriX! the axes intersect in 97.

Hence (</)-VT7-p)(^-V77-jo') destroys every vector coplanar with A and
\' and in particular it destroys tj if ^rjXk'= 0. Eliminating p and p' from
{<f)-Y7]-p)((f)-Yr)-p')r] = we have the equation of the locus which may
be w^ritten in the form

Y7]cf)rj

which should be compared with (vii.).]

1 =

Art. 103. To give an example of applying quaternions to a
problem in statics, consider the case of a chain lying on a smooth
surface and acted on by any force. Let ^ be the force per unit

mass, V the normal reaction per unit length, w the mass of the

chain per unit length, and P the tension of the chain.

For equilibrium of an infinitesimal element at the extremity
of p,

d(PVdp)+ wiTdp-j-pTdp = 0, Spdp = 0, (i.)

the pull back at p being — FJJdp and the pull forward at p+ dp
being +PUd/o+ d(PUdyo). When the length of the chain is
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taken as the independent variable (Art. 85, p. 133), this may be
written

P.p"+Fp+iv^+v = (), Sp'p" = 0, Spp'= 0; (II.)

and in virtue of the conditions it separates into

P.p'+wp'-Wp'^+v = 0, P'-wSip=0, (III.)

remembering that Tp'—l so that S^p-'^= —S^p\
In certain cases the second of these equations can be integrated,

and as it may be written

dP-'wSidp= 0', P-\wSidp = const = Pq (iv.)

is the integral in question, Pq being a constant.

The first equation gives the reaction

Tp^= P^Tp"^-2PwSip"+ w^T(V^py; (v.)

and shows that Pp'+Wp'-Wp^ is normal to the surface, or that

Ppp"+ 'i^^p'i is tangential. On elimination of the reaction (Tv),

PYp'Vi;-{-wp'Sp'-^iUv = 0; (VI.)

and the tension into the curvature into the cosine of the angle

between the osculating and tangent planes is equal to the

tangential component of the applied force per unit length which
is at right angles to the tangent to the chain.



CHAPTER XII.

FINITE DISPLACEMENTS.

Art. 104. To transfer a body from one position to another

we may commence by rotating it until lines drawn in it receive

their final directions. A translation without rotation which
brings any point into its final position will complete the trans-

ference. In quaternions* if tj is the vector from a fixed point

to any point in the body, the rotation changes the vectors to

points in the body into gt^g"^ and a translation r added to this

gives ^ = ^_l_^^^-i (I)

for the relation between vectors tJ7 drawn to points in the initial

position of the body, and vectors p drawn from the same origin

to the same points in their final position.

This relation may be thrown into many various forms; for

example p^^^^q(^^^)q-i^ r'= T-i-q€q-' (ii.)

shows that if the rotation were made about the extremity of the

vector e, the successive translation must be r ; or we may first

suppose a translation ( — e) effected, then the rotation about the

origin and then the translation r.
Successive displacements are compounded according to the

relations, ^= ^'+^V^-i+ g'^^g-Y-i („i.)

if p'= r-\-qTSq-\ p = T'+ qpq-'^;

and the order is all important for

P,= T+qTq-'^-hqq'r;:^q'-'^q-'^ (iv.)

if P.'
= r+q'^q'-\ p^^r+ qp.'q-''

;

and this vector p^ is not equal to p. Even the rotations are

different unless qq'— q'q, that is unless q and q' are coplanar;

and the conditions that the order should be immaterial are

V(TV3')-g'-^ = V(T'Vg).g-i; qq'= q'q (v.)

* The remarks in Art. 21 should be compared with this.



f
ART. 105.] SUCCESSIVE DISPLACEMENTS. 169

Small displacements are commutative in order of application.

This is merely a particular case of a general theorem. Let any
quantity a be changed by one operation into a-\rfi(ct) where

/i(a) is small, and into (X+/2(a) by another operation, /g (a.) being

also small. Then to the second order of small quantities,

= a-^Ma)+Ma-{-Ma)) (vi.)

The simplest view of a displacement is as a hvist about a
screw, that is a rotation about a line coupled with a proportionate

translation along the line. If tj is the vector to any point on the

line, and PJJYq the translation along the line, we have to

identify

T+ q^q-'^= rj+ PVYq-]-q(T^-rj)q-\ (vii.)

so that

T=rj-qr]q-'-\-PVYq={vq-qv)q-^-^i''^^q

= 2Y(r,Yq).q-^-\-Pmq,

and as it immediately appears that the first vector on the right

is at right angles to Yq, we find on resolving r along and
perpendicular toYq,

2\.„Yq =Y^.Yq.q, P =S^; (vill.)

and of these the first is the equation of the locus of the extremity

of the vector rj, or of the axis of the screw. The ratio of P to

the angle of the rotation, or P : 2z.g, is the ratio of the pitch (p)
to a whole revolution ; and the pitch is therefore

^ =-^.S^ (IX.)^ Lq JJYq

Art. 105. Continuing to employ the same notation as in the

last article, let us suppose that q and t are functions of a variable

parameter, the time t for example, and we shall have

dyo = dT+ Vft)(/o— T)d^ where codt = 2Ydqq~'^,

d/o= dT+ g(VtCT)^-id^ where idt= 2Yq-'^dq (i.)

To prove these relations observe that

dp= dT4-dg.trrg"^+ ^CT.dg-i

= dT-\-dqq-'^.qzjq~'^— qT;yq-'^.dqq-'^ (n.)

remenfbering the expression for the differential of the reciprocal

of a quaternion. This leads at once to the first relation since

p\ — \p= 2Y .Yp\ if p is any quaternion and A any vector.

The second relation is proved in quite an analogous manner.
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The vector r is the vector from the fixed origin of vectors p to

the variable origin of vectors trr, and its derived with respect to

the time is the velocity of that origin. The velocity of the

extremity of the vector p is compounded of this velocity together

with the velocity Nw{p— T) which is at right angles to o) and to

p— T and equal to the tensor of o) into the perpendicular from
the extremity of p— T on &> (the two vectors w and p— r being

supposed to have a common origin). In fact the vector w
represents in magnitude and direction the angular velocity of

the body.

Using fluxional notation for the velocities, we may write

p= T4-Vto(p-T)= a)Sft)-iT+Vft)(/o~T+Vft,-iT-ira)), ...(ill.)

thus analysing the instantaneous motion of the body into a

rotation round a line coupled with a proportionate velocity of

translation along the line ; or, in Sir Robert Ball's phraseology,

we have determined the instantaneous twist-velocity about the

instantaneous screw ; the expressions

>7= T— Va)"^t+ CCa), _p = Sa)-^T (IV.)

being the equation of the line or axis of instantaneous motion
and the pitch of the instantaneous screw. (Compare Art. 99.)

When the equation of this axis is referred to the moving
origin we may write it in the form

q~^{ri— T)q=-'^r'^q~'^Tq-\-XL= ri because ft)= gfg~\ ...(v.)

for (jo = 2Vqq-'^ = 2Yq(q-^)q-'^ = 2q(Vq-'^q)q-^ = qiq-'^ by (i.).

The line rj'= —Yr'^q-'^Tq-\-xi being supposed drawn in the body,
the motion of the body brings it into coincidence at the proper
instant with the instantaneous axis at the time t. Also the

rotation converts i into the angular velocity vector oo at the
time t. Thus in dealing with the body itself it is convenient to

use the vectors i and zj, and in considering the motion of the
body with regard to external objects, the vectors w and p are

preferably employed.
Let us no longer suppose the vector ray to be constant as in (ii.).

Then if the vectors p and CT are still connected by the first

equation of the last article, we shall have instead of the first

equation of the present article

p = T+Yw(p-T)+ q^q-'^, /)= T-+g(Yitrr+ C7)g-i; ...(vi.)

and more particularly when the vector r is constantly zero,

p==Ywp+ q^q-^, /)= g(t^+ V^C7)g-^ if yo= gC7g-i; ...(vil.)

and still more particularly

(6= qLq~^ because (o — qiq~^, Ycocd= 0, Yu = 0. ...(viii.)
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What we really do here is to compare the velocities of a point

moving arbitrarily with respect to fixed objects and with respect

to the moving body. The vector cr represents the velocity of the

point relatively to the body, while p is its velocity relatively to

fixed objects. Sometimes a notation such as

?^>= 5tng-i; p = N^p+^ -,
where p = gtrrg-i (ix.)

may be employed—but it is not very explicit—to denote the

variation of p arising from causes independent of the rotation

;

and in this notation we may replace (VIII.) by

"=-ar ^^-^

which expresses that the rate of change of the angular velocity

is independent of the rotation. We may for example suppose

i, j and k to be fixed relatively to the vectors ^, and a = qiq~^,

/3 = qjq~'^, y — qkq''^ to be unit vectors derived from these by the

rotation. In this case if p = ax+ fiy-\-yz, the derived p takes

account of the variations of a, /3 and y as well as of x, y and z,

while :^ only refers to the variations of x, y and z and not at

all to those of a, /3 and y.

These results include the whole theory of fixed and moving
axes, there being now no difficulty in writing down deriveds of

any order. For example, on difierentiating (vi.) again, we have

p = T+Vw (yo — t)+ Vft)(/6— t)+ gcJg " ^+ Vcogtng ~ \

and on substituting for p, the general formula of acceleration is

jo = r+ Vw(p-T)+Vft)Va)(y3-T)+ g^g-^+ 2Va)gCTg-\ ...(xi.)

which may of course be expressed in terms of i.

In the case of a rigid body it is frequently convenient to

replace (ill.) by the relation

p= (r-\-Ywp, (XII.)

where or is the velocity of the point of the body which in-

stantaneously coincides with the fixed origin of vectors p. The
acceleration of the point at the extremity of the vector p is

p= &-i-Yco(T+ Yd)p+ Y(oVa)p, (XIII.)

which follows on substitution for p in the result of difierentiating

(XII.).

As'in Art. 102, we represent the twist-velocity of the body by
the symbol (o-, co), the fixed origin being taken as base-point, and
we may replace (iv.) of the present article by

cr= (p-{-Yn)w; p = Scrw-'^; rj= Ya(o-^+ Xco (XIV.)
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Ex. 1. The instantaneous twist-velocity of a body may be reduced to a
pair of simultaneous angular velocities, (^ and /?', round two lines, by means
of the relations

o-= Ya/?+ Va'^', co= /3+ /3',

where a and a are vectors to points on the lines. [Compare Art. 102.]
I

Ex. 2. If p is the pitch of the instantaneous screw and if (o is the angular
velocity of a rigid body, the velocity of any point in the body satisfies the
relation Sp(o-i=^;

I
and vectors drawn from a common origin to represent the simultaneous
velocities of the points of the body terminate on a common plane.

Ex. 3. The locus of points having a velocity of given magnitude is a right

circular cylinder

Tp= T((T+ Y(Tp) or TYco(/)-7?)= (Tp2-^2X(o2)i^

coaxial with the instantaneous axis.

Ex. 4. Determine the acceleration centre of a body moving arbitrarily.

[In terms of cr and co, if the acceleration of the point at the extremity of

the vector a is instantaneously zero,

o-+ Va)cr+ Vtba-l-a)V"a>a= or cr+ Vwo"+ <^a= 0,

where cf)p= Vw/a+ coVw/). Hence t/^/o= — wS(i>/o —V . wVcuw . p + w^Sw/) and
the third invariant is m= Va)u)2, so that

aYwu)^= (wSw +Y . wYww — w^Sw) . {&+ Ywcr).]

Ex. 5. The instantaneous acceleration of a point of a rigid body moving
in any manner is a linear function of the vector to the point from the
acceleration centre, or

p= c{i(p — a) where <^/o= Ycb/o+ YwYw/) and a= 0.

(a) The locus of points having instantaneous accelerations of given magni-
tude is one of a system of similar and coaxial ellipsoids

Tct>(p-a)= Tp,

concentric with the acceleration centre, whose linear dimensions are propor-
tional to the acceleration.

(6) The function <^ is independent of the velocity of translation, and a
change in that velocity merely alters the position of the acceleration centre

and of the associated ellipsoids.

Ex. 6. The locus of points for which the magnitude of the velocity is

momentarily constant is the quadric surface

S(o--l-Yw/o)((T-fYt;>/))= or S{d+ Ya)(/)-a)}(^(/)-a)= ;

and the locus of points for which the direction of the velocity is momentarily
constant is the twisted cubic

Y(o-+Va)p)((r-i-Y(oo-+ Yw/3-|-(oYa)p)= or Y{d-l-Ya>(p-a)}<^(/o-a)= 0.

(a) The equation of the twisted cubic may also be written in the form

pYoxJ}^— {((i) — t(ji) S ((i) — toi) 4-Y . (0Ycow — w^Sw} . (<r — ^cr -f Yokt)

or {p — a)Ywa)2= t\frd -^ ^^(toSaxx+ wSwot)— ^^(oSwd,

where ^ is a variable scalar.

[For the twisted cubic we have cf)p+&+ Yowr =t((r+ Ycop). Compare Ex. 4.]
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Art. 106. If the quaternion on which the rotation depends is a function

of two variable parameters, u and v, we shall write

2Vdg'5'~i= (o'di^+(i>,dv, d$'=:^d?^+^dw, (i.)

and it must be observed that <o'dw+ tu,dy is not a perfect differential. To
determine the relation connecting w' and w,, suppose t!T to be a constant

vector and p= qV5q~^. Then p is a function of u and v, and

l^^y.',.,-.
|=v.,,%- 3^=J^ (u,

Calculating the second differentials,

or, rearranging and observing that Vw'Vw,A, — Vw.Vw'A=V . Vco'o), . A, we
have, because CT is an arbitrary vector,

^ ^+V(oV= (ill.)

But again, by the last article and in the notation there explained,

B(u' -^r I ,
9(<»>') ^w, ^T- , ,

3(a),) . .

and accordingly we may replace (iii.) by this new expression

The results of this article have been employed in Art. 94 in connection
with the theory of surfaces.

Art. 107. In many investigations relating to rotations for-

mulae of the type *

p=y^a''Sa-''/3-yy-' (l.)

present themselves, and it may not be superfluous to make a few
remarks about their reduction. It frequently happens that

a, j8 and y form a mutually rectangular unit system, and in this

case a S = aa-\-h/3+cy we have

p= Y/3^yy' .aa+ y^^a^'^-yy" .hp+ y^a^'^l^y-' . cy, ...(ll.)

when we apply the general relation

a'^^^^^a-^ if Sa^= 0, Ta= l (ill.)

In order to reduce the coefficient of h^ for instance, it is

generally best to start from the central term, a^ in this case,

and to replace it by cos irx+ a sin ttX, and similarly for successive

reductions. Thus we avoid introducing the sines and cosines of

the halves of the angles of rotation.

It is worth while noticing that
• $

da^.a-*= |dir.a-hJda(ai-2^-|-a-i) (iV.)

* It may be advisable to refer again to Chap. IV. and its examples.
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is expressible in terms of the whole angle using the relation

The general relation connecting two quaternions jp and q and
two scalars x and y,

(^p^qp-^)y=p^qyp-^, (v.)

will often be found useful.

Ex. 1. A planet rotates about its axis y in the period 2m~^ and a

satellite describes a circular orbit round the planet in the period 2n~^ ; show
that the motion relative to the planet is represented by

p= (^y-mt^ymtyt y-mt^ymt ^(^y-mt^ytntynt^ S5€= 0,

the vectors in this expression being all fixed relatively to the planet ; and
reduce the equation to

p= y-mt^nt^^-ntytnt^

(a) By taking the epoch when the satellite is in the plane of the equator,

the equation may be simplified to

p^^y-mtj^ayfitj^ y-ntj^-aymt^ S^7=

where r is the radius of the orbit and where Tra is the angle between the
plane of the orbit and the equator.

(b) The equation may also be written

p= ra(cos Trnt sin 7r7nt - cos Tra sin Trnt cos Trmt)

+r(3{cos irnt cos 7rm^+ cos Tra sin Trnt sin Tvmt)

+ ry sin TT-a sin TTTiif

where a= fSy.

(c) The condition for a stationary point may be written in the form

or 7ia + mVy-"*^-"y^«y'^/3= 0,

and this is equivalent to

n=m cos Tra, cos Trnt= 0.

Ex. 2. Unit vectors a, f3 and y are directed respectively to the point of
upper culmination on the celestial equator, to the east point and to the
north celestial pole, while ^, j and k are directed to the south point, the east

point and the zenith. Show that the vector directed to a star may be
expressed in the forms

o-= y -^/?- 2'a/?^y^= h-'^j-Hj^k'^

where ttz is the hour-angle west, Tvy the declination, ttvj the azimuth west,

and t:v the altitude.

(a) If 7r6 is the latitude of the place of observation, show that

and obtain the quaternion equation

yzp2yyz^l^l,^-wp2v-l^w^b^

and hence deduce the formulae of transformation from one set of coordinates-

to the other.
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Ex. 3. Assuming the effect of refraction to be K times the tangent of
the zenith distance, prove that the vector to the apparent place of a star is
0-+ CT where

(a) Substituting for I' in terms of a and f3 (Ex. 2 («)), verify the successive
steps of the transformation

(^yky-'^-ya= -
(3Y(^--'Y(3y= - ^S^y^^ cos irb+ ^^j^+i gi^ ^j,

= — sin Trb sin Try - cos 7r6 cos Try cos tt^ + /?(sin irb cos Try - cos ttB sin Try cos tt^)

— y cos Tr6 sin ttz.

(b) Show that the expression for Z3 reduces to the form

_ j8' cos Tr6 sin TT^

+

y'(sin Tr6 cos Try - cos Tr6 sin Try cos ttz)

sin Trb sin Try+ cos Trb cos Try cos ttz

where
fi'

and y' are unit vectors tangential respectively to the parallel of
declination and to the circle of declination.

(c) If q is the parallactic angle and ^ the zenith distance, show that

^-hrrq^jj^^ ^= ^o"' "
i -3

. UVyo"
. tan f

.

Ex. 4. An equatorial telescope in imperfect adjustment is directed to a
star, and the circle readings are observed to be (j/+ i/')'^ and (z+z')Tr where
y and z' are small ; if for zero circle readings the direction of the telescope

is a+ a', that of the declination axis j3+ 13' and that of the polar axis 7 + 7'

where a, f3'
and 7' are small vectors perpendicular respectively to a, /3

and 7, show that

o-= (7 + yV^'\(i+ (3V'^''\o. + a') {(3+ (3y^^{y+yT' ;

and neglecting small terms of the second order obtain the relation

YI3'{Trz'y+ {y-'-^+ y)y'](3-'o.+ Y{Try'f3+ {^y-^+ (3)(3'}a= a:.

From this and two similar equations corresponding to the results of

setting the telescope on two other known stars, deduce the errors in the
adjustment which are represented by the small vectors a', ^' and 7'.

Ex. 5. The unit of length is taken equal to the focal length of a photo-
graphic telescope in perfect adjustment so that were it not for refraction

the image of a star would remain fixed on the photographic plate. Assuming
the effect of refraction to be K times the tangent of the zenith distance,,

show that the image describes on the plate a curve represented by

87^x7 No-

where ZTT is the hour angle reckoned towards the west, and where cr, 7 and k

are three (coplanar) unit vectors fixed relatively to the plate and directed

respectively to the star, to the north celestial pole and, when the telescope

is on the star in the meridian, to the zenith.

{a) Prove that this curve represents a conic, or a portion of a conic, and
that it isj, the intersection of the plane and cone

ScTo-=0, S7U(o-^-trr)=S7K,

and consider the arrangement of the curves for various values of K and for

stars of different declinations.
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Ex. 6. The positions of stars are determined by taking transits with a
telescope movable about a fixed axis. Show that the hour-angle irz at the
time of transit and the declination iry are connected with the reading iru of

a circle fixed to the telescope at right angles to the fixed axis by the
quaternion equation

where 6, b\ c and c' are constants of the instrument, a, jS and y having the
same signification as in Ex. 2.

(a) If 8 is a unit vector along the axis round which the telescope turns
the equation may be written in the form

and for an almucantar whose line of collimation makes a constant angle {jra)

with the vertical and is in the meridian when u= 0, the equation is|

y'(3'-Y= /^' COS 7ra+ yS'-^a^"/?" sin rra

where irb is the latitude of the place.

Ex. 7. If XJo- is the unit vector towards the centre of a planet ; Uct+ t
the vector towards a marking on the planet in latitude I

; y the unit vector

along the planet's axis of rotation ; a the unit vector from the planet's

centre towards the point on its equator on the meridian through the
marking ; if P is the time of rotation of the planet on its axis and s the
angular semi-diameter at the time of observation, show that

y sin Z-J-y^-P' a cos 1==ts-^ - Uo-(l -HtV^)^'

where t is the time of observation measured from some selected epoch.

(a) Denoting the vector on the right by rj, show that y terminates on a
fixed circle and verify that

y cosec 1= -Y (7)213+ V3ni+ Vil2)(^Vin2V3)~^

where rji, 7)2 and 773 are the values of the vector 77 at three times of

observation.

(c) Show how to deduce the time of rotation.

Ex. 8. A polar axis having a fixed direction y carries a declination axis

initially parallel to (^ on which is mounted a telescope initially parallel to a.

The vectors being all of unit length and the instrument being completely
out of adjustment so that no conditions of rectangular!ty are even approxi-

mately satisfied, show that when the direction of the telescope is changed
to a' by a rotation round the declination axis followed by a rotation round
the polar axis,

a'= y^^%^-yy-^

while if the rotation is first made round the polar axis and then round the
declination axis,

^>^(^Yfiy-yy'ay-\y'(^y-J,

and prove the equivalence of these two expressions.

(a) If u and v are the tangents of half the angles of rotation round the
polar axis and the declination axis respectively, show that the vector
equation

a-a+uYy{a-\-a!)+vY^{a+ a')+ uv{{a-a')^(Sy + Y.Yy(^{a+ a')]=

serves to determine both u and v.

(h) Deduce from this the scalar quadratic equation in i^ :

S)8(a - a') - 2?*Sy)8a' - ^2s^(a - a')Sy^ - '?*2s^Vy/5(a -f- a') =0.



CHAPTER XIII.

STEAIN.

Art. 108. Homogeneous strain converts vectors (p) in an
unstrained body into vectors (o-= (pp) in the manner described in

the chapter on the linear vector function (Arts. 63, 64), but the

transformation is of less generality. The order of rotation from
^a to <pp to (py must agree with that from a to /3 to y in the

case of a physical strain, for otherwise a positive volume would
be converted into a negative volume (Art. 24). In other words
the third invariant of the function must be positive, or the

condition ^->0 (i)

must be satisfied. This requires one latent root of (p to be real

and positive, and when the roots are all real this is obviously the

case. When two of the roots are imaginary, g'-\-sJ — \g" and
g'— \l — \g\ the third invariant is {g"^-\'g"'^)g where g is the

remaining latent root ; so that here again one root is positive.

It follows from this that in every homogeneous strain one
direction at least remains unchanged, for we have

U^a=Ua if (pa = ga, ^>0 (ll.)

If the three latent roots are positive, three lines remain
unrotated. In the case of a "pure strain three mutually
rectangular directions remain unchanged, and the function

(f>
is

self-conjugate with "positive latent roots. The decomposition of

a linear function into a self-conjugate function preceded or

followed by a rotation has been considered in Art. 70 ; and by

selecting the square root {cfxpr of the function <p(j) which has all

its latent roots positive we decompose, without ambiguity, an
arbitrary strain into a rotation followed by a pure strain.

A sphere Tyo = r is converted into an ellipsoid—the strain

ellipsoid*

T0-V= r or So-0'-V"V+r2 = 0; (m.)

* The results of Art. 70 show that the surface is ellipsoidal.

J.Q. M
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and the axes of this surface are parallel to the axes oi cp'-^cp-'^ or
of its inverse (p<p' (not ^'(p). And the ellipsoid

T(l)p = r or Sp(p'(pp'\-r^ = (iv.)

is converted into the sphere Tcr= r. The role of the functions

00' and 0'0 is quite analogous to that of the functions of
Art. 101, p. 161, denoted by the same symbols.

Aet. 109. A shear is represented by the function

(pp = p — l3Sap where Sa/3= 0, (l.)

for a point in the body is displaced parallel to a fixed direction

(U/3) through a distance proportional to its distance from a plane

(Sap = 0) parallel to the fixed direction (U/3). In all cases the
displacement of a point—the extremity of the vector p—is cpp— p.

A shear accompanied by a uniform dilatation is represented by

^p=9p— ^Sap, Sa/3 = 0, (II.)

the ratio of the changed volume to the original being that of g^

to unity.

The function <pp = gqpq-^— qPq-'^Sap, Sa/3 = 0, (ill.)

represents a dilatation and a shear followed by a rotation, and
this function involves eight constants—three in JJq, one in g,

three in aT/3 and one in JJ/3 (because Sa/3= 0)—just one less

than in the general function.

Omitting the condition Sa/3 = in (iii.), the function involves

nine constants, and the function

^P = 9qpq~^-^Pq-''^ap • (IV.)

is capable of representing the most general strain which may be

produced by shifting in a fixed direction (U/3) planes parallel to

a fixed plane (Sap = 0) by an amount {—g~^$Sap) proportional
to the perpendicular distance from the fixed j^lane ; by altering

all lines in the ratio g to unity, and by superposing a rotation.

To prove this we identify

0'0P= (^-«S/3)(^-/3Sa)/o

=g^p-.aS{gp-\^^a)p-{gp'-^P^a)Sap (v.)

with Hamilton's cyclic form (Art. 77) for the general self-

conjugate ellipsoidal function so that the third invariant of may
be positive or that ^2(^_s^^)^0. ^^^
in other words we suppose to be a given function, and it is

required to determine a, ^8, g and q. If a^, b^, c^ are the latent

roots of the general self-conjugate function

(P'<Pp
= b^p-^\SlULp'hjULS\p, (vii.)
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(compare Art. 77 (ii.) and Ex. 2), we have on comparison with (v.)

g = h, a=-X, b/3 = ^-{-iXT/3^ (VIII.)

whence substituting from (vii.) in 6T^= T(m+ JXT/32), we find

the quadratic in T/3^,

TX4T/3*-2(a2+c2)Tx2T/32+(a2-c2)2= 0, (ix.)

whose roots are TX^T^S^= (a+ c)^. These give

and it follows from (vi.) that we must select the negative sign.

Thus we have definitely by (viii.)

g^h, a=-X, h/3= ^-i\-\a^c:)^; (x.)

and the rotation may be determined as in Art. 70. A second
solution is obtained by interchanging X and fx.

Ex. 1. Prove that the necessary and sufficient conditions that the
function <fi should represent a uniform dilatation and a dilatation accompany-
ing a shear, are respectively

<f>-g=0, {i>-gy=0.

[These are excellent examples of the degradation of the symbolic cubic.

Art. 66, p. 95.]

Ex. 2. If the function
<f)

represents a uniform dilatation and two super-

posed shears,

m"7n^= m'.

[Assuming c{>p=g{l - f3'Sa)(l - l3Sa)p, Sa/3= Sa'^'= 0, it is necessary to

prove that g is a root of
(f>,

and that it is equal to the cube root of m. It

may be shown that the converse is also true.]

Ex. 3. The strain produced by two successive pure strains is generally

impure.

[Two functions are commutative in order of operation only if they are

coaxial (Art. 66, Ex. 2, p. 95).]

Art. 110. Lines in the unstrained body whose lengths are

altered in a given ratio g are parallel to edges of the quadric cone

T<pVp=g, or SVp(<p'(p^g^)Vp = (i.)

—one of a concyclic system ; and by (vii.) this equation may be

replaced by

2S\UpSiuL{Jp = h'--g\ or sinu sin v= {b^- g^){a^- c^)-\ ...(u.)

where it and v are the angles a line makes with the cyclic planes

of the function ^'0. The ratio g for any direction is the

reciprocal of the parallel radius of the quadric (compare Art.

108 (IV.)),
T<Pp = 1 (III.)
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If the inclination of the vector ^ to a remains unchanged, the

condition

SU . a/3 = SU . 0a0/3, or Sa/3 . T(pacpP= Sa<l>'<pp . Ta/3 . . .(iv.)

is satisfied, and the locus of the vectors /3 is the quartic cone

Sa/32Sa0V«S/595>>^ = Sa^'<l>^^ . a^/3^ .(v.)

which has a and Va^'^a for double edges. Substituting a+ ta\

for /3 in this equation, we get for the edges in the plane SX/o = 0,

which passes through a,

,8 = YX(^'cf>a±a(S\-^\lrxlr'Xf), (vi.)

after discarding the factor t^. These edges are real for all

directions of the vector X, and it easily appears that the upper
sign corresponds to SU . a/3= -\-SU . ^a<f)/3, while the lower sign

corresponds to SU . a/3 = — SU . (pa(pP on comparing the signs

of Sa^ and S/30'0a. The lower sign corresponds to the case in

which the angle between (pa and 0/3 is the supplement of that

between a and /3. The vector Ya(p'(pa alone remains at right

angles to a, and (Art. 75 (iv.)) this vector is parallel to the

second principal axis of the section of (iii.) of which a is a
principal axis.

If an arbitrary rotation is superposed on the strain, the cone (iv.) is the
locus of lines which together with a can be unrotated lines—or axes of

q{<i>p)q~^' The latent root corresponding to any edge {(i) is (compare (i.))

±T<^U/5. To determine the rotation which must be superposed on the
strain so as to leave unrotated two vectors a and f3 satisfying the condition
(iv.) we may utilize Ex. 6, Chapter III., p. 26, and find the rotation which
converts U^a and U<^/? into ±Ua and ± U^, having as in (vi.) due regard
to the indeterminate sign. It is possible to superpose a rotation on a strain

so that all the lines in a plane may be unrotated. It is only necessary to

reduce the function <^ to the form given in Art. 109 (iv.), and we have

q-K<j>p.q=gp-f3Sap, (vii.)

and the lines in the plane Sap= (or SX.p= 0, compare Art. 109 (x.))—

a

cyclic plane of <^'<^—are unrotated.

Art. 111. The displacement at the extremity of the vector p
produced by the strain is

S= cT-p = {(p-l)p = p(Sp-'iPp-l)+ pYp-^cj>p, (I.)

which we have resolved along and at right angles to the vector p.

When unity is a latent root of the function </), the displacement
is parallel to a fixed plane—that of the axes of (p complementary
to the unstrained and unrotated axis corresponding to the root

unity. (See Art. 66 (x.), p. 94.)

In general, provided the greatest and least roots of 0'0 are

greater and less than unity,, it is possible by the last article

to superpose a rotation on the strain so that the resulting dis-

placement may be everywhere parallel to a fixed plane.
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The quantity e= Sp-\(f)-l)p (ii.)

is called the elongation, and it is numerically equal to the
reciprocal of the square of the radius of the elongation quadric

Sp{^,-l)p=-l, (<Po=Hi>+ <Pll (ni.)

which is parallel to the vector p. This quadric may be an
ellipsoid or a hyperboloid according to the relative magnitudes of

the roots of <pQ and unity.

The component of the displacement perpendicular to p may be
written in the form

Yrjp = Y<Ppp-^ . p = Yep+ Y^,pp-K p (IV.)

where e is the spin-vector of 0, and (Art. 75 (iv.)) the vector

YcpQpp-^ is parallel to the second principal axis of the section of

(hi.) of which yo is a principal axis. The magnitude of this

vector {TYp~\(pQ— l) p) is numerically equal to the area of the
triangle formed by lines drawn along JJp and along the central

perpendicular on the corresponding tangent plane of the elonga-

tion quadric—the lengths of these lines being the reciprocals of

those of the central radius and the central perpendicular.

Art. 112. When the strain is not homogeneous, if the point P
is strained to Q, the relation between the vectors p( = OF) and
o-( = OQ) ceases to be linear, but we always have the correspond-

ing differentials linearly related, or

dcr= <pdp if cr= 0(p), (l.)

being any function of p, and ^dp being a linear function of dp
involving the vector p in its constitution. So long then as we
confine our attention to the limits of vanishing and corresponding
regions at Q and P, so that the vector p does not vary, the

treatment of this general case is precisely the same as in the

case of homogeneous strain. ^^
In terms of the operator V,

do-= -SdyoV . 0-, (II.)

so that if a is any vector which is not subject to the operation of V,

0a=_SaV.o-, and 0a= -VSacr, (lU.)^'/;V

as we may verify in many ways* by the results of Arts. 56
and 57 ; and in the same way it is not hard to see that we
may write

*
{(l>-(l>')a=Y .YVa-.a, YV(r= 2e, (iv.)

* For example <f>a= + ^SaVfxv . ?^ : SXfiv ; d>'a = SV/tj/Sa?^ : SXfiu.
- du du
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where e is the spin-vector of a. Thus for a pure strain at all

points, we must have
VVo- = 0, or o-= VP (v.)

(Art. 56) where P is a scalar function of p. (See p. 74.)

Art. 113. For small strains it is convenient to change the

notation and to consider the displacement of a point produced
by the strain rather than the relation between the vectors to the

strained and unstrained positions of the point. We write there-

fore for a homogeneous small strain

(T= p-\-(pp, (I.)

replacing the function (p of earlier articles by l + (p, the

function (p being now small, or Tcpp being small in comparison
with Tp. Apart from its smallness, however, the new function

is of a more general character than the old. We may for

example have the order of rotation from (pa to ^/S to (py different

from that from a to /5 to y without violating the physical reality

of the strain. In fact the ratio of volumes is now

U^ S(a+ 4.a){p+ 4>p)(y+ ^y) ^ Sa^y+ i:8^afiy ^^
| m", ...(II.)

Sa/Sy SajSy

and m" is small in comparison with unity.

Small strains are superposable (cf. Art. 104 (vi.), p. 169), or

because we agree to neglect the terms of the second order (pi(p2p

and (p2fpiP-

A small strain is resolvable into a pure strain and a small

rotation by the relation

p+ cpp = p-\-(p,p+ Y6p = (l-{-Ye){l-^<p,)p = +cPo)(l+ye)p (IV.)

where <p is the self-conjugate part of (p and where e is its spin-

vector.

We may write

yo+ y6/) = (l-hJe)p(l-hie)-i = p+ j6/)-|p6 (V.)

The strain quadric now becomes

(T2-2S(70oO-+r2= O (VI.)

if /o^-h'^^ = 0; for p = {l — (p)cr if. cr = (l-h^)/o, since approximately

p= (l-^2)p==(l-^)<7.
For non-homogeneous small strains, suppose ^(^o) to be the

displacement of the extremity of the vector p. Equation (i.) then
becomes

(T- P+ 0(p), (VII.)

and for a neighbouring point

da' = dpi-(pdp = dp— SdpV . Op (vm.)
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Confining the attention to points in the neighbourhood of the
extremity of p, equation (viii.) is of the same form as (i.), and
the results of the present article apply if we regard the function

already employed as having the meaning assigned to the same
symbol in (viii.), and if we suppose that the vectors p throughout
the article are small and equivalent to the vectors dp of (viii.).

(See Art. 124, p. 211.)

Ex. 1. Interpret Hamilton's focal and cyclic transformations of a self-

conjugate function,

(^p= aaYap + bfSSfSp=gp+ AS/xp+ />tS A/a,

where (^p represents the displacement due to a small pure strain.

[The terms may be taken separately. aaVap represents a shrinkage or an
expansion to or from one line (a) ; bf^S/3p represents an elongation parallel

to another. See Minchin, Treatise on Statics, Art. 379.]
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DYNAMICS OF A PAETICLE.

Art. 114. The rate of change of the momentum of a particle

is equal* to the applied force, or

-^^.7np =mp = ^ (I.)

where m is the mass
; p the velocity, mp the momentum and ^

the applied force.

The moment of momentum of the particle about any point A is

Y(p— a)mp= mV(p— a)p; (li.)

and if A is a fixed point the rate of change of moment of

momentum is equal to the moment of the applied force, for

^^mY{p-a)p =mY(p-a)p= Y(p^a)i, (m.)

since Ypp = 0. If the point A is in motion with velocity d, the
rate of change of moment of momentum is

mY(p-a)p-mYap= Y{p-a)i-mYdp, (iv.)

and in this case it depends on the velocity of the point A and on
that of the particle P, unless indeed the motion of A is constantly
parallel to that of P.

Since i
. JmV= - ^iSp/i = - Sp^= -|J S^dp, (v.)

.

the energy equation is

JmTpH {S^dp=^ const =F, (vi.)

and for a conservative system of forces (Art. 56 (vii.), p. 74), «

'sidp = P, ^=-VP (VII.)
\'
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Ex. 1. If the applied force is parallel to a fixed plane SAp= 0, deduce
the integral SX.p= at+ b ; and if it is parallel to a fixed line (/x), show that
YiJLp= at+ /3 where a, &, a and f3 are constants of integration.

Ex. 2. If the force is directed to a fixed centre—the origin of vectors p—
show that

mYpp= (3= -d constant vector.

Ex. 3. If T is the tangential and N the normal component of the force
and V the velocity in any orbit, prove that if C is the curvature of the orbit,

[Letting accents denote deriveds of p with respect to the arc, we have

p=p'Vf p=p"v^+pv since v= s. Also Tp''= C and ^=p'T+Vp"N. See
Art. 117.]

Art. 115. The equation of motion of a particle of unit mass
attracted to any number of fixed centres with forces varying as

the distance is

^'= Saj(ai— /3) = 2ajai — /oSctj, (l.)

the attraction to any centre being proportional to the distance

T{a^— p) and acting along '\J{a^ — p) towards the centre. The
scalars a^, a^, etc., define the ratio of the magnitude of the

attraction of the centres to the distance, and they are positive

for attractive and negative for repulsive forces.

If a is the vector to the mean centre of the centres for the

multiples tt;^, a^, ... a^, and if a is the sum of the multiples, the

equation takes the form

p= a{a — p), (a= ^a^, aa^^a^a^); (ll.)

and the particle moves as if attracted to the mean centre.

The more general equation

p-\-2bp-i-cp = 0, (ill.)

where h and c are scalar constants, is that of the motion of a
particle acted on by a force ( — cp) due to a centre at the origin

attracting or repelling (c>'0 or <C0) proportionally to the

distance, and also acted on by a force ( — 2bp) proportional to the

velocity and accelerating or retarding according as 6<^0 or ^0.
To integrate this equation, we assume

/o = 71^"'' +72^"'+ etc (IV.)

where y^, y^, etc., are constant vectors and n^, n^, etc., constant

scalars, and we express that the result of substituting for p in

(ill.) is identically satisfied for all values of t Equating to zero

the coefficients of e"'^ etc., after substitution, we find

y(7l2+ 26n+ c) = (V.)

where y and n stand for any one of the vectors y-^ and the

corresponding scalar n^. These conditions require all but two
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of the vectors to vanish. The remaining two y^ and y^ are

indeterminate, and the corresponding values of n are the roots of .

the coefficient of y in (v.) and are I

n^— —h-\-'p, n^——h—p, if ^^ = 6^— c; i

n^=—h-\-s/~^q, n^^—h — s/^lq, \i q^= c-¥\ ...{vi.)

and the corresponding solution of the equation is

p = e-'''{y^e'+ y^e-''') or p = e-'\S^QO^qt+ S.^^\nqt), ...(vil.)

the vectors y^ and yg (or S-^ and ^2) heing arbitrary constants of

integration.

In the more general case, to solve the equation
*'

/)+ <^j/3 + <^2^ = 0, (viii.)

where (^^ and <^2 ^^^ ^^'^ constant linear vector functions, and which
represents a damped motion of a particle such as might be supposed to take
place in a crystalline medium, an assumption of the form (iv.) gives

n^y+ n<j>^y + ^.^y= Q, (ix.)

so that the function (j)2+ n(^-^+7i^ has a zero root and y is the corresponding
axis. The third invariant of the function must vanish if it has a zero root,

and the appropriate values of the scalars n are the roots of the equation

^{<^c^^n<i>^ + n^)X{4>o-\-n<j>^ + n'^)lx{4>2 + n4>^ + 7i'^)v= 0, (x.)

where A, jx and v are any vectors. Solving this equation we determine six

linear functions with zero latent roots, and the corresponding axes (y^, y^^ etc.),

being determined, the solution is

;o=2iV"^ (^O
the arbitrary constants being the tensors of the vectors y.

Ex. 1. Show how to determine the constants of integration.

[We may have given the initial position and the initial velocity—six

constants. For example the solution of (11.) is p= o.-\-y-^ cos 'Jat+ y2 sin \Jat,

and if /3= /5 and p= y when t = 0, we have 71 = /? - «., 72*^= 7-]

Art. 116. For a force directed to a fixed centre, the origin of

vectors p, ^.^^^ W= ±Up, (i.)

and (Art. .114 (ili.)) we deduce at once the integral of moment
of momentum Vpp = /3, (il.)

where the constant ^ is double the vector area swept out by the

radius vector in unit time. Conversely if the vector moment of

momentum with respect to any fixed point is constant, that point

is a centre to which the force acting on the particle is directed,

for = — Ypp or pW^W p. The orbit of the particle lies in the

plane Sp/3= (m.)
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In general the vector /3 admits of transformations such as the

following (compare Art. 85 (ii.), p. 132)

:

/3 =V.Ve =V.^.^ =V<„=VU^.a«, ...(IV.)

where w is the angular velocity of the radius vector, and where w
(for a plane orbit) is the angle the radius vector makes with some
prime vector or more generally where w is the scalar angular
velocity. We may also write

^-^ or^-/5- ^- (y)
Tp^~ dt ' Tp^~^ ' dt '

^^-^

so that for a central force

p^-ml3-'^, if i=-mVpT:p-\ (vi.)

.In particular when the law of force is that of the inverse

square, the scalar m is constant, and (vi.) integrates at once
and gives

^= — -m/^-^Up+ y where S/3y = by (ii.), (vii.)

y being a vector constant of integration. This shows that the

hodograph of the motion is a circle whose centre is the extremity
of the vector y and whose radius is mT/3~^.

Moreover, substituting for p in (ii.), we find the equation of

the orbit, ^ ^ im . tt / xl3=^m/3-^Tp+ Ypy; (viii.)

which is equivalent to the two equations

mTp = T/3''-S/3yp, Sfip = 0; (ix.)

and which represents a conic referred to a focus as origin. If w
is the angle the radius makes w^th the vector y/3 we may
replace (ix.) by

Tp(l+ eco8iv)=p where e = 7n-'^Ty^, p = m"^T^^ ...(x.)

and e is the excentricity and p the semi-latus-7'ectum.

Taking the tensor of (vii.), utilizing (ix.) and observing that

by (x.) Ty'^ = me^p~^, we obtain the energy equation

whet&a=p(l—e^)~'^ is the mean distance.

Now when w^e resolve the velocity along and perpendicular

to p,

p= p-'Spp-^p-Wpp=:Vpr+ p-''^ if r= Tp', (xii.)
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whence on substitution in (xi.) we find

=m(
2_£_r
r r^ a

.(XIII.)

which gives on integration the radius vector in terms of the

time.

Ex. 1. Deduce the usual u and 6 equations for a central orbit by

expressing p in the form rk^'i.

[Here p= (r+ r$k)k^i, f3=r^6k= hk, 0=hu^, r=r'^= -hu' where accents

denote differentiation with respect to d and where u= r~^. Thus

p= -/i{u' — uk) Ici^ p= - h^u^ (^" \-%i)k-' z.]

Ex. 2. If a, /5 and y are three unit vectors, a along the radius vector,

y perpendicular to the plane of the instantaneous orbit and ^= ya ; if c is

the rate of description of angles by the radius vector in the orbit and if a
is the rate at which the plane of the orbit turns round the radius vector,

prove that the equation of motion is

a (y* — rc'^) + ^(2rc+ fc) + ymc= ^.

[Here -=V^= yc, -^=V . :^/-^ = ad, so that a— Be, y=-/3d and
a p y ^PP

r- ^ /
I

.

0z=ya- ac. Compare Art. 86. By the instantaneous orbit is meant the orbit

which a planet would describe round the sun if the disturbing forces were
suddenly removed. The equation exhibits the effect of the components of

the force along and perpendicular to the radius vector and perpendicular to

the plane of the orbit.]

Ex. 3. Express the equation of motion in a perturbed orbit in terms of

the reciprocal of the radius vector (u), the rate of description of areas (k)

and the rate (a') at which the orbit turns round the radius vector per unit

description of angle in the orbit ; and show that it is

[We have to express everything in terms of A =^^pp= ^'^^, of u and of a
and their differentials with respect to the angle c. Writing thiis

p= au~^ we have p= hu^ .^(au~^) = ku^{f3u~^ — au'ir''^), etc.]

Ex. 4. Express the equation of motion of a particle in the form

a (u"+ u) + au'~^-(3u^-y (us" - su") - y -^ (us' - su') = - -^^

where u is the reciprocal of the projection of the radius vector on a fixed

plane, a is a unit vector along this projection, y is the unit normal to the

plane, /3= ya, ^is the rate of description of the projection of areas, s is the

tangent or the angle between the radius vector and the projection, and
the independent variable is the angle in the fixed plane.

[Here p= (a+ sy)u~^, aa~^ = y, y' = 0, /?'=— a, Zrw''^= c if c is the angle in

the plane. The scalar equations to which the above is equivalent have been
much used in the lunar theory.]
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Ex. 5. Prove that the vector curvatures of an orbit and its hodograph
are

dUd^_ I l_ dUdp_ I J_
dp ~ ^Tp' dp I'Tp'

and that for a central orbit they reduce to

dVdp_ /3T$ dVdp jB

dp T/oTp3' dp T^p2
where f3= Ypp.

(a) Hence the law of nature is the only law for which the hodograph is a
circle for all initial conditions.

Art. 117. The equation of motion of a particle constrained

to move along a curve or on a surface is

P=i+i^ (I-)

where v is the reaction arising from the constraint. If there is no
friction, the reaction is at right angles to the direction of motion
or the vector v lies in the normal plane of the constraining curve

or is the normal to the constraining surface. The condition

Spp = 0, (II.)

which is then satisfied, allows us to retain the equations (v.)

and (vi.) of Art. 114.

In terms of the deriveds with respect to the arc s of the orbit

which we now denote by p, p" , etc., we have (compare Art. 85,

Ex. 1, p. 133),

P = pv, p = p"v^-{-pv, V= S, V= VV, (ill.)

or in the notation of Art. 86, p. 134,

p= av, p = ^c{d^+ av (iv.)

where -y is the velocity ; and the equation of motion is

pv^+ pv= $+v (V.)

In the case of a constraining curve, the motion must be deter-

mined from the energy equation which is alone available for

this purpose. For a surface we have, on elimination of the

unknown tensor of v,

Y(p-i)v = 0, (VI.)

and in this equation v is proportional to a known function of p
—the result of operating by V on the scalar equation of the

constraining surface. (Art. 54, p. 69.)

If on the other hand we seek the reaction arising from the

curv^.or surface, we have by (ii.)

v^p'-^Np'v=p"v^-p-^Ypi= -y\^i^p-p-^^pi. ...(vii.)

the energy equation being employed in the last transformation.
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For a rough constraint, the equation of motion may be written in the
form

p= p"v^+pvv' = ^+ v-'npTv^ S/dV= 0, (vm.)

where 7i is the coefficient of friction.

Resolving along and at right angles to p this equation gives

vv'+ Sp(= -7iTv, v=p"v^-p'-^Yp'l ; ^. (ix.)

whence on elimination of Tv,

p"v^-p'-Wp'$=~Vv.7r\vv' + Sp'^); (x.)

or again in terms of the vectors p and p, we have

nyp(p-$)=U{pv).Sp{p-^\ (XI.)

because 8p{p-^)= nT(pv) and Wp(p-()= XJ(pv). Equation (x.) or (xi.)

may be employed for a constraining surface. In the case of a curve we
must take the tensor of each side to eliminate the unknown Uv. We may
remark that it follows from (ix.) that if the curve is a geodesic on the

constraining surface V . vp'~Wp'^= or

Svp$=0, (xii.)

because (Art. 90) for a geodesic p" \\v. In other words, when the direction

of the applied force is coplanar with the normal to the surface and the
tangent to the orbit, the curve is a geodesic on the surface, and in particular

this is the case when there is no applied force.

If the constraining curve or surface is in motion so that. Art. 104,

p. 168, the vector p to the particle from a fixed point is connected with
the vector CT to the particle from a point moving with the constraint by the
equation

p-=T + qU5q~'^, (xiii.)

in which r and q are supposed to be given functions of t, the equation of

motion takes the form (compare Art. 105, p. 171)

r+ 5'(^+ 2Vttrr+ VtCT+ YtVt^)g-i= ^+ v, (xiv.)

and for a smooth constraint,

S^^g-iv= 0, (xv.>

qHSq-^ being the velocity with which the particle moves along the curve or
surface of the constraint.

Ex. 1. A particle moves under gravity on a surface of revolution having
its axis vertical.

[If k is the unit vector directed vertically downwards, the equation of

motion is Y(p — gk)v= 0. Since the surface is of revolution, the vectors v,

k and p are coplanar, or Spkv= 0, so that Ykp
||
Ykv

||
Yvp. Operating on

the equation of motion by S^ or Sp we find the integrable relation Skpp= Oy

so that Skpp= —h where h is the constant rate of description of area by
the projection of p on the horizontal plane. We have also Svp= and
Skp=-z if we write 8kp—-z. From these three equations pSYkpYkv
= — hYkv — zYvYkp ; and if the equation of the surface is given in the form
Tp=f{z)=f{-Skp) we may put v = Vp-kf'(z) and Ykp=Ykvf{z). Hence
pWkp'^= K^ — z^v^'tp'^ ; and by Art. 114 (vi.) on expressing everything in

terms of z we obtain the equation

. ,„, z^{f^-^zff+fP) = 2{E^gz){f-2^)-h\

If the surface is spherical fiz) is constant and equal to the radius of the

sphere, so that /' is zero.
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Again if iv is the angle the plane of p and k makes with some initial plane^

h=wTYkp^= w{f^-z'^)

from which ic can be found in terms of z by the previous equation.

If, on the other hand, the equation of the surface is given in the form
Skp=f{Tp), it may be more convenient to obtain an equation in r{=Tp)
and r by using Spp+ rr= instead of S^p+ z= ; and if the equation is of

the form Skp= f{TYkp)=f(p) we may use i$VkpVkp+pp = 0.]

Ex. 2. A particle slides under gravity within a fine smooth tube which
revolves round a vertical axis.

[The origin being taken on the axis, the vector to the particle is p= q^q~^
(compare p. 168), and if 7i is the angle through which the tube has been
rotated from some initial position,

p= q{-UJ+ nVh-CS) q-\ •p= q{x^+2hYk^+ n^kYkT;5+ vYkm) q'^
;

while the equation of motion is p=gk+ v where SvqTDq~^= 0. Because the

axis of q is parallel to k, we find on elimination of the reaction v,

S^iiS+ n^kNkV5 + nVkm) =gStyk
;

and in this equation n and ii are given functions of t when the law of rotation

is known, and CT is a known function of a parameter variable with the time
when the form of the tube is known. If the velocity of rotation is uniform,
the equation integrates and

|(Trj2

+

v^ykz:j'^)=gSkT;y + ^C.

If for example the curve is a helix with its axis vertical so that
^= a{i cos ic-hj sin u)+ bku we have ?iT^= -{a^ + b'^)u% and Ykuy^= -a% and
the equation is u^{d^'+b^)+n^a^= 2gbn- C : and if the curve is a vertical

circle, T:y= a(icosu+ ksimt) we have

iira^+ nhi^ cos^ u= 2ga sin u — C]

Ex. 3. A particle under gravity traverses with uniform velocity a
smooth curve which rotates uniformly round a vertical axis. Prove that

the curve lies on a paraboloid of revolution.

[The equation of the surface on which the curve must lie is

n^TVkvy'^ + 2gSkm= coiist.]

Ex. 4. Two particles of masses m and m', connected by an inextensible

string which remains stretched throughout the motion, are projected from
the extremities of the vectors a and a with the velocities /5 and yS' ; prove
that the vector to the particle m during the motion is p where

p{m+ m')= m{a+ fit) + m' (a + fi't)

+ m'T(a - a') . (U(a - a) cos nt+ 11 (/3 - /3') sin nt),

the scalar n being defined by

7iT(a-a')= T(^-/5').

Ex, 5. If a particle can be made by suitable initial conditions to describe

a given curve under the action of a force ^, show that

2/."jSJdp-p'Vp'^=0,

p' and p" being the first and second deriveds with respect to the arc and a
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suitable constant being included in the integral which is taken along the
curve.

(a) Hence deduce M. Bonnet's theorem.

[We have 7n{p"'V^+ p'vv')= $ which gives mvv'= — S^/a' and mv^= — ^fS^d/a,

etc. Conversely if the condition is satisfied it follows that a particle will for

suitable initial conditions describe the curve. If ^j, ^2? etc., are forces under
which, acting separately, a particle can describe the curve, and if for greater

clearness we replace jS^„d/) by (7„+ jS^„d/o (the new integral being taken

from any selected point on the curve), we have

^{2p"{Cn+ \SiAp) -^pYpU = 2p{^G,,+ jS . 2^,, . &p - p'Yp'^in) ; I

or a particle will describe the curve freely under the action of the resultant

of the forces provided its mass m and the velocity v satisfy mv^= llmnVn^

initially.]

Ex. 6. Show that the condition of the last example is equivalent to the
conditions ^ d * ^

Sp>t= 0, ^^Sp"-'i+ 2Sp'i= 0,

which assert that the force must be in the osculating plane of the curve, and
that the rate of change (as we pass along the curve) of the product of the
radius of curvature into the normal component of the force is equal to double
the tangential component.

Art. 118. Tait has applied the calculus of variations in the

following manner in the determination of the curves of quickest

descent, or the brachistochrones, for a conservative system of

forces. (Quaternions, Arts. 518 and 523.)
J

.(I.)If the integral ^ = [q. Tdyo= [q. ds

is taken along a curve, Q being a given scalar function of p, the
variation of the integral corresponding to a variation of the
curve is

SA = ^SQ . Tdp+
Jq

. STdp = - ^SSpV .Q.Tdp- ^QSJJdp . ^d^o.

The symbols d and S are commutative in order of operation,

so that on integrating by parts

JQSUdyo . Sdp = JQSUdyo . dSp = [QSVdp . Sp]- ^SSpd(QUdp)

where the term in square brackets corresponds to the variation
of the limits of the integral. Thus

SA=-[QSVdp.Sp]-{-^SSp{d(QVdp)-VQ.Tdp} (ii.)

If the integral is stationary, the variation vanishes and the
term under the sign of integration in (ii.) must be zero for all

vectors Sp. And since Sp may have any direction when the
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curve is not restricted in any manner except at the limits, we
must have

d(Q\Jdp)-VQ.Tdp = 0, or ^(Q^0-VQ = O (iii.)

If on the other hand the curve is constrained to lie on a

surface so that SvSp = where p is normal to the surface, the

condition is /a \
V.(^(Qp')-VQ) = (IV.)

For the brachistochrone the integral A is the time of descrip-

tion of the curve or

A=t=^{v-Kds, Q = l>-i = (2£'-2P)~* (v.)

by Art. 114 (vi.), so that VQ= VP .(^=VP .Tp-^ The first

equation (ill.) now becomes

d{Tp-KVdp)-VP.Tp-\dt = or d. p-^+VF .Tp-^dt = 0,

or finally p+p-^.VP.p= (vi.)

Tait remarks " It is very instructive to compare this equation

with that of the free path (/)+VP= 0); noting how the force

— VP is, as it were, reflected on the tangent of the path."

Ex. Determine the brachistochrone when gravity is the only force.

I [HereVP=— K, a constant vector, and the equation dp~^- KTp~^dt=0
shows that p-^= a+ Kf{t) where a is a constant vector which may without

loss of generality be supposed to be perpendicular to k. Substitution gives

, df-{Ta:^+ TKY^)dt= 0, and the solution of this is

I /=T. K-^atsiXiTaK{t~tQ)^T.K-^atRJin{t-tQ)

where 7i= T. ttK. Thus

p-^=-Ta(Ua+ VKtSLnn{t-tQ))

and p= Ta-^ . cos'^)i{t - ^o)(Ua+ U/c tan n{t - ^q)),

and on integration

p= f3-^n-^Ta-^['Ua{2n(t-tQ)+ sm2n{t-tQ)}-VKcos2n(t-to)]

which represents a cycloid. (Tait's Quaternions, Art. 524.)]

•^-

J.Q.



CHAPTER XV.

DYNAMICS.

Art. 119. Let ni-^, 'tn^, etc., be the masses of particles of any
dynamical system which are situated at the extremities of the

vectors p^, p^, etc., drawn from a fixed origin. By Newton's
second law the equation of motion of the particle wi^ is

^h/>'i = ^i+&+ ^i3+etc., (I.)

where ^^ is the force external to the system which acts on mi^

and where ^^2 i^ ^^® force due to the interaction of m^ on m^, etc.

By Newton's third law action and reaction are equal and
opposite, or

fl2+& = 0, Vpi^i2+ V/.2f21 = 0, (II.)

these being the conditions that ^^2 ^^^ ^21 should equilibrate.

Hence by adding equations such as (i.) for all the particles, and
by adding the results of operating on these equations by Vp^,

Vp2, etc., we obtain the equations

2mi/,\ = Efp Hm^Yp^p^ = ^^Pi^v ("!•)

which are independent of the interactions of the particles.

Attending to (ii.) the rate of change of kinetic energy of the

system of particles is evidently

^ . i2m,Tft2= _2m,SAft= -2Sft|,-2:S(ft-/5,)^,„ ...(IV.)

and because (11.) implies ^^2 Ii Pi~~ P2 ^^ ^^^ ^^^^ ^^^^ ^^ inde-

pendent of the interactions provided the relative velocity of

every pair of particles is at right angles to the line joining

them—or in other words, provided the distance between every
pair of particles remains unchanged.

Writing

M=i:m^, Mp==^m^p^, i=^iv ^ = ^^Piiv = I.m^Yp,p^,(y.)

so that M is the total mass of the system, p the vector to the

centre of mass, ^ the resultant external force, f] the resultant
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moment of the external forces with respect to the origin as base
point and 6 the resultant moment of momentum with respect ' to

the origin, the equations (ill.) become

Mp=i, e=r, (VI.)

When the external forces are zero, ^ and rj vanish and the

integrals of (vi.) are

Mp=:at-^fi, e = y, , (VII.)

where a, ^ and y are constant vectors ; and when the internal

forces are given functions of the distances between the particles,

we have also in this case the integral of energy

\^m{Tp,^ = 2/. T(p,- p^) where f,^ = U (Pi - A2)/ • T (pi- p^). (viii.)

I

Art. 120. With reference to a point moving in any arbitrary

manner, the extremity of the vector e, the moment of momentum is

I
e. = l.m^N{p^-e){p^--e)= e-MY{pk+ €p-ek)', (l.)

and (vi.), Art. 119, may be replaced by

M-p = i, e, = rj,-MY{p-eye, (ll.)

where r]^= r]^ Ve^ is the resultant moment of the forces about the

extremity of e. In particular when e terminates at the centre of

mass, the equations are

^P = i^ Oo= %^ (Ill-)

where 6q and tjq refer to the centre of mass. These equations are

of the same form as those of the last article. We may note that

in general

. e,=:O^MVpp=e,-MYp,p,, (IV.)

I where p^ = p— €.

Ex. 1. Find the locus of points fixed in space about which at any instant

the moment of momentum is a minimum.
[If the extremity of e terminates at a fixed point Oe= — MYep, and the

locus of points for which T^e has a given value is the right circular cylinder

T (^ - MYep)= T^e. Writing d=M{pp+ Yi^p) we have

T(9e2= if2^2Xp2+ J^2XV(€ - €^)p\

The locus is the line MYep^Ydp .
p'^. Compare Art. 99, p. 156.]

Ex. 2. A point moves in such a manner that the moment of momentum
with respect to it is constant. Determine the particulars of the motion,

[If de is constant, the relation (iv.) MYpfpe= -0+ Oe+MYpp gives, on
difi"erentiating twice and utilizing the equations of motion (Art. 119 (vi.)),

MYp,p, = -rj-{-Ypi MY(p,pe + pe/Se)=-h +Yp$+Ypi
because Be is constant. Forming the vectors of the products of right and of

left hand members of the first and second of these three relations, and
also fdrftiing the scalar of the product of corresponding members of the

three relations, we obtain the equation

p,=p _ €= ± V((9 - 6'e
- MYpp)(7i - Yp^)

X {MS{e - 6'e - MYpp){rj - Yp^X-n - V/>^'- V/iJ)rt
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so that € is expressed in terms of quantities which are known when the

motion of the system is given. There are thus two paths corresponding to

the double sign symmetrically placed with respect to the path of the centre

of mass.]

Ex. 3. Refer the equations of motion to variable axes.

[See Art. 105 and the formulae of differentiation (vi.) and (xi.), p. 170.]

Art. 121. In the case of a rigid body, let e be the vector to

any point fixed in it and let co be the angular velocity. Then by
Art. 105, p. 170, . • V ^ ^ ^T^ 1Pi-e=Va)(pi-e), (I.)

I

because the velocity of the point in the body at the extremity of

p^ relatively to that at the extremity of e is due to the angular

velocity co. Equation (i.) of the last article may now be replaced

^^
(9e = 2m,V(p,-e)Va)(pi-e) = 0.a), (ll.)

so that Of is a linear function of co. The linear function (p^ is

fixed relatively to the body because the vectors pi — e, etc., are

fixed in the body, but in considering the rate of change of cp^o)

we must take account of the change of orientation of the body as

well as of the change of co. We have (Art. 105 (ix.)),

^<peCO = ^ h ^a)0eW = ^eO)+ ^^W0eft) ; i^^^-)

and equations (ii.) of the last article become

Mp=^^, ^,w-{-Yw(j),co = r],-MY{p-ey€; (IV.)

and when e terminates at the centre of mass (Art. 120 (m.)),

Mp=^, (pw-{-Yco(pco = %, (v.)

if (Art. 120 (IV.)) (l)co = ^,co-My(p-€)Yco(p-e) refers to the

centre of mass.

If the body has a fixed point, the extremity of e, (iv.) reduces to

^e(JO+ YcO(peCO = fje (^^O

In general the vector ^^co is the moment of momentum of the

body with reference to the fixed point which instantaneously

coincides with the extremity of the vector e, and the moment of

inertia round any line (Uco) through that point is

Sa)-V.«= 2miTV.Ua).(y0i-e)2, (vil.)

and this is numerically equal to the reciprocal of the square of

the parallel radius of the quadric I

StD'^e^= — 1 ...(VIII.)

The function 0e may be called the inertia function corre-

sponding to the extremity of e.
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The principal axes of the body through the point are the axes
of the self-conjugate function

(f>^,
and the moment of inertia

round a principal axis is maximum, or minimum, or at least

stationary in value. If the extremity of e is fixed in space as
well as in the body, so that the body moves about a fixed point,

it appears from (vi.) that when the body is set rotating under
no forces about one of these principal axes, it will rotate

permanently round it. For we have Vcocpeco = if w is along a
principal axis, and <p/o = by (vi.); hence a) = since the function
has not in general a zero root.

.

The energy equation (Art. 119 (iv.)) easily reduces in terms
of e and w to

^ { iMTe^- MSeYoyip - e)- JSco^eO)} = - Sef- Swrj,, . . .(iX.)

where r]^ = ^V(p^— e)^-^: and when e terminates at the centre of

mass J

^fUMTp^- iS^^o,) = - Spi- Swr,, (X.)

Ex. 1. Prove the relation (in.) by direct differentiation of the explicit

^^^^^
(/).(o = 2miV(pi - e)Yio(p, - e).

[We have ^ . V . (pi
- e)Y(o(p^ - e)

= V.Vco(pi-e)V(o(/3i-€) + V.(/Jl-€)Va,(/)l-€)+ V.(;Ol-€)VcuV(o(/Oi-€)

by (i.). The first terra on the right vanishes. The third is

Vw(/)i-€)Sa>(/)i-€) or V.a)V(/)i-€)V(u(pi-€).]

Ex. 2. If / is a principal moment of inertia at the extremity of the
vector €, or in other words a latent root of

(f>^,
show that

P - 27i"/2+ (7i''2+ n')I- {n"n' -n)=0,

where n'\ n' and n are three positive scalars, namely,

n"= - 2mi(/)i - e)- ; n'— — ^m^m^ (pi
- e) {p^ - e)-

;

n= ^m^m.^n^S {p^ - e) {p^ - e) (/O3 - ef.

[See EleTTients, Art. 417, and observe that </)eW= 7i"a» + 2mj(/)j — €)Sw(/9i-€).
Compare Art. 65, Ex. 1, p. 92.]

Ex. 3. The function ^^ corresponding to the extremity of the vector tTT

drawn from the centre of mass is

where c^ corresponds to the centre of mass ; the principal axes at the
extremity of CT are the normals to the three confocals.

Strr(J/-^(^-?0-^tDr=-l,

which fiass through that point ; and the locus of points at which one of the
moments of inertia is equal to / is the quartic surface

Scy(J/-i</)+Tt;72 _ j/-i/)-icj= _ 1.

[If </)e,a= /a= <^a+ i/TcTVatrr, we have (<^+ JfT CT^ - /) a + i/^CTSaCT= 0,

etc., and u=M~^I- Tm'^. Compare Art. 101 (xx.) and (xxi.), p. 162.]
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Ex. 4. A body under no applied forces moves about a fixed point.

The equation of motion <^d) -fVw^w = 0, furnishes the integrals

cf)(D = 0, SoxfxD= —l?

where Q and h are constants of integration. Interpret this result.

(a) The equation Sw(/)w = -h? may be regarded as representing an ellipsoid

fixed in the body which rolls upon a plane fixed in space, and represented by
the equation So)d=-h^, the point of contact being the extremity of the
vector w,

(b) The equation d^SiocfiO}- h^<fiO}^= represents a cone fixed in the body
which is the body locus of the instantaneous axis of rotation ; and because
the rate of change of to is the same with respect to the body as with respect

to lines of reference fixed in space (Art. 105 (x.)) it follows that this cone
rolls on the space locus of the instantaneous axis.

(c) The extremity of the vector to describes in the body part of the curve
of intersection of two quadrics fixed in the body (the polhode) Sox^co= - Ji^

and Soycfy^o)= 0^, and the locus of the same point in space is a plane curve
(the herpolhode).

(d) The vector 0, though fixed in space, describes in the body the cone
g^S6^~^d-k^^= where g= Tdis the constant tensor of 6, and the extremity
of traces out part of the sphero-conic in which this cone cuts the reciprocal

quadricS(9<A-^<9=-A2.

(e) The reciprocal quadric, fixed in the body, passes through a fixed point
in space, and the central perpendicular on the tangent plane at this point
varies inversely as the angular velocity.

(/) The relations

S(/)Co (ai+ Vtoto) = 0, S</)to(to — Vtoto) = 0,

in which oj is the rate of change of to with respect to the body, may be
obtained by differentiating the equation of motion. Hence

(fxj) . (Stotbio+ Vcotb'^)= — h^Yij)(ii}+ Vtotu)

and c^tb(Sto(ot6 + Vtoto2)= A2VtoVtb(t6 + Voxib)
;

and the vectors to, 6) and to satisfy a condition

SVo> (w - Vtot^) Yii) (w 4- Vwd;) = 0,

which is independent of the constants of the body. The corresponding
relation gy^ ^^2^^ _ gVtoD.to) VD.toD.^to =

connects ui and its first and second deriveds D<to and D«^to with respect to

fixed axes.

{g) Knowing to at any instant and its first and second deriveds with
reference either to axes fixed in the body or in space, the function ^ is

determinate to a factor.

Ex. 5. The angular velocity of a body moving under no forces about a
fixed point is expressible in terms of elliptic functions by the relation

(o= ((^j+^)2a where a;= ^{Ao(^- Ix-J) and ^a-fVa<^a = 0,

a being a constant imaginary vector, <^^ being a linear function coaxial with (^

and having for its latent cubic 4^^ — Ig — J=^ 0-

[Compare Art. 84, p. 124. Here the assumed expression for to gives

\x (</>! + xY^o. +V (<^i + xf^o,^ (<^i + xi^o.=

or i*(^1 + OG)~^a + (^1 -f xy^Ya4)asJmi{x)— 0,
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where m^{x) is the third invariant of ^i+.r. We may obviously take the
first invariant of ^j to be zero without loss of generality, so that the latent
cubic of the specified type, and the differential equation for x is reduced to
Weierstrass's standard form.

The function ^j is of the form ^, =a+ 6x+ c\/r where v and ^/r are the
auxiliary functions for <^, and when the first invariant is taken to be zero,

3a+ 26wi"+ cm' = 0. The scalars b and c are arbitrary constants of integra-
tion. Assuming a=ui + vj+wk where i, j, k are the axes of <^, we see that
Au= {B-C)viv, Bv= {C—A)wu, Cw= (A-B)icv, J, B and C being the latent
roots of <^—the principal moments of inertia. Thus

_. / BC
I

CA
I

AB
''~^^{C-A){A-By^y{A-B){B~Cy''S{B-C){C-AS

and the latent roots of (/^j are lh{B-^C-^A)-lc{CA+AB-2BC\ etc.

Moreover since by definition of a, we have Sa(^a= 0, Sa(f)^a= and also

a'^= + l as may be easily shown, we find Sio(f)(jD= Sa<f){^i+x)a=cABC and
(<fni}y= Sa<j>\(f)-i^+x)a= —bABC, or in the notation of the last example,
cABC^ -A2 and bABC=g^.]

Ex. 6. Eesolve the vector of angular momentum (fxo, along and at right
angles to w, and investigate the relation of the components to the quadric

Szj(t>Tn= -1.
[Compare Art. Ill, p. 181.]

Ex. 7. The motion of a freely moving body is known, and it is required
to determine as far as possible its dynamical constants.

[The mass cannot be determined, but if we know the particulars of the
motion of three points, the extremities of e^, €2 and €3, we can find w from the
two equations e^ - €3=^w (e^ — Cg)? ^1 - €3=Vw (e^ — €3).

In the next place, to find p, the vector to the centre of mass, we have

ei = p + Yo)(€^- p), and ti= p+ Y(lj(€i- p) + YwYii)(ei- p),

and because p= the second of these relations gives p on solution of a linear

equation. To find the function
<f)

corresponding to the centre of mass, we
differentiate w twice and use the results of Ex. 4, (/) and (g).]

Ex. 8. Given four particles whose united mass is that of a given rigid

body, it is required to connect the particles by a light frame-work, so that
the dynamical constants of the system may be identical with those of the
body.

[If cf>X= —^in^p^SpiX where A is an arbitrary vector, and where the
vectors p^, etc., are drawn from the centre of mass of the body to terminate
at the particles of mass mj, etc., the problem is solved when we reduce the
function ^ to the form

cfik= -aaSak-bf3^/3X-cySyX-d8S8X where aa+ b/3+ cy-\-d8= 0,

«, 6, c and d being the masses of the four particles and a, ^, y and S being
their vectors of position. Now for some scalar x, we have

xa= S/3y8, xb= — Say8, xc= Sa(38, xd= — Sa/?y
;

and we also have (Art. 65, Ex. 1, p. 92)

VrA=-2a6Vai8Sa^A, m= 2a5cSa/?y2.

The second of these serves to determine x^ for it reduces to m=x^abcd2a.
SubsiiflUting a for A in the first, we find y(/-a=xbcdV(/3 - 8)(y - 8) ; and when
we operate with Sa, S/5 and Sy on this and similar expressions we have

Sayf/a= -x^bcd{b+ c + d), etc., Sayfr13= etc. =x^abcd. It easily appears that

the six relations in a, /3 and y imply the remaining six involving 8 when
2aa=0.
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Assuming first any vector a which satisfies the condition

Sayjra = - x%cd(Jb+ c+ d)

—that is any vector which terminates on a certain quadric—we have next the
two relations Sa\lr/3=x^abcd, S/Sirl3= -£c^acd{a+ c+ d) which require the

vector f3 to terminate on a conic. Selecting ft there remain the three

equations Sa^y= Sft\]ry =j;^abcd, Sy\^y=^ -x^abd{a+ h-{-d) which determine

y as the vector to a point of intersection of a line and a quadric. Finally,

we have S= -(i~Xatt + 6^+ cy).]

Art. 122. When an impulse acts on a system of particles, the

velocity of the particle m^ is changed from p-^^^ to p^ where

^i(Pi-Pi,o) = ^i+ ^i2+^i3+ etc., (I.)

where X^ is the external impulse acting on m^ and where \^, \^,
etc., are the impulsive actions of the particles m,, m^, etc., on m^.

These impulsive interactions satisfy conditions analogous to (ii.)

of Art. 119, and we obtain the equations

2^i(A-A.o) = 2Xp i:m,Vpi(^i-/5i,o)= 2VpiXi, (II.)

which are independent of the interactions. The work done on
the particle m^ by the impulse is (Thomson and Tait, Art. 308)

-JS(/Ji+pi,o)(Xi+ Xi2+ Ai3+etc.), (III.)

and the total work done on the whole system is

W= - J2S(/3i+/3i,o)Xi- J2S(/3i-^2+ Pi,o-P2,o)^i2- •••(IV.)

For a rigid body it is frequently convenient to define the motion
by the velocity (o-) of the point of the body coinciding with
the origin and the angular velocity {w). Thus p^ = o-— Yp^w,

and if x= 2Xi, 1^, = ^^p^\, cj>uo = ^Yp^Nc^p^, (v.)

so that X is the resultant force and /j. the resultant moment of

the impulse with respect to the origin while (j> is the inertia

function corresponding to the origin, the equations (ii.) become

il/(o--o-o-Vp(a)-a)o)) = X, ifVp(o--o-o)+ 0(a)-a)o) = M ;
(vi-)

and because X^a is parallel to the line joinmg two particles and
therefore perpendicular to pi — p2 and to Pi,o

—
p2,o> ^^^^ expression

for the work done is independent of X^g, etc., and reduces to

W= -lS((r+ o-o)X-iS(a)+ a)o)/x, (vil.)

because we have

2S (o-+ o-o
— Vpi ( ft)+ ojo) ) Xi = S (o-+ o-q)2Xi+ S (o) 4- Wo)2 VpiXj.

When the origin is taken at the centre of mass, (vi.) becomes

M(a--(To)= \, 0o(^-^o) = M. (VIII.)

where (p^ refers to the centre of mass, and thus we have at once

(r= (To+if"^X, ftj = ft)o+ ^o"V; (IX.)
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or, in the language of the theory of screws, when a free body
having an instantaneous twist velocity (o-q, Wq) is acted on by
an impulsive wrench (/ul, X), the instantaneous twist velocity

immediately after the impulse is (o-q+ M-'^X, Wq+ ^q'VX ^^^
centre of mass being the base-point. (See p. 171.)

When the origin is taken at an arbitrary point, we may replace

(VI.) by
M((T— a-Q— yp(w— Wq)) = \, ^o(ft)— ft)o)= // — VyoX, (x.)

where (rr, w), (o-q, coq) and (jul, X) are referred to the origin as

base-point and where <f>Q corresponds to the centre of mass. This
is easily shown in various ways.
The form of the expression (vii.) is independent of the choice

of base-point. In particular when the base-point is at the centre

of mass, we find from (vii.), (viii.) and (ix.),

W= _i(ifo-2 4-Sa)0o«)+ K^^o'+ Sa)o0o^o)

= - J(.^/-iX2-f-SM0o-V)-S((roX+ a)oM) (XI.)

Ex. 1. Prove that the solution of (vi.) is

(w - Wo)(m + MSpcf)-^+ M'^Sp(f)p . p^)

= (yfr-\-MxpSp + MY<fipYp+ MySp)(fx-Yp\) ; M{o--(To)= X + MYp(w-<s)o),

where m is the third invariant of cj) and where x ^^^ V^ s-re the auxiliary
functions.

[Compare Ex. 5, Chap. VIII., p. 102.]

Ex. 2. A rigid body is moving in any manner and an impulsive force is

applied to a given point of the body so as to cause that point to move
instantaneously with a given velocity. Determine all particulars.

[The centre of mass being taken as base-point, and a being the vector to

the point in question and d being the velocity of the point, the equations

il/(a- — cTq)= A, <^(a) -a>Q)= VaA, (t — Vaa>= d

serve to determine the unknowns cr, w and A. We have on elimination of

or and A, <^w-i/aVa(o = </)Wo+ J/Ya(d-{ro) ; and by Ex. 5, Chap. VIII., the

solution may be written

(co - Wo)(w - MSacf>xa + M^-a^Sa4>a) = My^Ya (a - do) - M^Y<f>aYaYa (d - do),

where do= 0*0 — Vawo is the initial velocity of the point. Hence in terms of

(0 - a>o as given by this equation

cr-cro= d- do+ Va(a>-(Oo) and A= J/~^(o- — o-q).]

Ex. 3. A rigid body is moving in any manner. Suddenly a line in the

body is constrained to move in a definite manner.

[If a and /? are the vectors from the centre of mass to two points on the

line, we may suppose the impulsive wrench to consist of forces A and A'

applied at the ex:tremities of a and /3. Hence

J/(^-cro)= A+ A', (/>(w-a>o)= V(aA-h^A'), o-= d + Vatu=^ -|- V^cu,

where d and ft are the velocities of the extremities of a and ft.
From the

first and second equation we deduce S(^ — a)^(w — Wo) + i/Sa/3((r-(ro)= 0,

which asserts that the moment of momentum about the line is unchanged.
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We also have (i)= {a — /3+ x){a — 13)~^, where ^ is a scalar to be determined
by substituting for w and cr in the equation just found. Solving the linear

equation for a; we find to, and hence cr and A and A'.]

Ex. 4. A rigid body is moving in any manner. It is required with the
least possible expenditure of energy to cause a given point to move in a
given manner.

[Writing equation (xi.) in the form

If= - ^{M(d + Vaw)2+ Swt/)w) + ^ (J/(ao+ Vawo)^+ Soj^cfiOio),

we express that this function of to is a minimum. We find

cfid) — MaVao)=MYad,

and as in Ex. 2, this gives

(u (m - ifSa<^x« + ^^a^Sac^a)= MxIrYad - M'^YcfiaYaYad,

and substituting in cr= a+ Vaw, in (f){o) - (Dq) = fx and in i¥(o- — ctq) = A, we
determine the impulsive wrench and the instantaneous twist velocity.]

Ex. 5. If p and p' are the pitches of the screws of an impulsive wrench
and of the instantaneous twist velocity produced by the wrench on a free

quiescent rigid body ; if also tTT and th' are the vector perpendiculars from
the centres of mass on the axes of these screws, Ma-~M{p' + 77J')(i) = )^,

lx= (p+ ZJ)X= <^a).

(a) Hence in terms of A and o),

p'= J/-iSAw-i, CT'= i/-iVAo>-i; p= S<^wA-i, CT=V</)(oA-i;

J/Twv/(yHTtrr'2) = TA, TAV(io2+ T(o2) = T<^w
;

(b) The shortest vector from the axis of the impulsive screw to that of

the instantaneous screw is C7'(S'Trn7'~^ — 1).

(c) Show that

<^w .
(0-^

=

M{p +z;y)(p'+Tn'); A

=

M(p'+ njj') c{>-^ {p + w)X',

and express the moment of inertia about the line through the centre of mass
parallel to the instantaneous axis in terms of p, p\ tD' and ct'.

{d) The cosine of the angle between the axes of the two screws is

^'(p'^+ TS7'2)~^ ; and if the axes are parallel, that of the instantaneous screw
passes through the centre of mass or else the instantaneous motion is a
translation. In the former case the pitch and vector perpendicular on the
axis of the impulsive screw satisfy the condition

CTS(/)AA-i=py<^AA-i.

Ex. 6. Determine the dynamical constants of a free body by observing
the effects produced by impulsive wrenches in starting the body from a
given position.

[If p is the vector from a fixed origin to the unknown centre of mass,
if an impulsive wrench is (/x. A) and the corresponding twist velocity is (cr, w)
for the fixed origin as base-point, the equations are (compare (x.))

J/(o-- Vp(u) = A,
(f)(1)

= fx-YpX,
together with others with accented letters cr', to', fx', A', cr", co", jjl", A" for

other impulsive wrenches and the corresponding twist velocities. From
these equations M, p and <^ (corresponding to the centre of mass) are to be
determined. The mass follows at once from the first equation, and we have

i/= S A(o(So-(o)-i = SA'to' (So-'(o')-i= SAV(S(rV')-^
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The vector p is given by

V(o-- J/-iA)(cr' - J^-iA')= W/3(oV/)(o'= - pS(o- - Jf-U) w'.

And the function ^ can be found from three couple equations. Some rather
elegant identities connecting the wrenches and the twist velocities may be
deduced from this beautiful problem of Sir Robert Ball's.]

Ex. 7. An impulsive wrench of given pitch and intensity is applied to

a free quiescent rigid body. The axis of the screw of the wrench passes

through a fixed point ; find the direction of the axis so that {a) the kinetic

energy, or {h) the angular velocity, generated by the impulse may be as

great as possible.

[The base-point being taken at the centre of mass, we have if. cr= A,

<^(o = (p+ Vy)A where TA, p and y are given. The kinetic energy is

— ^S(p + Vy)A^"^(/?-f- Vy)A -|J/~^A^, and if this is a maximum subject to

the condition that TA is given, we have (jo- Vy)</)~^(p +Vy)A=^A where
(/ is a scalar—a latent root of the self-conjugate function on the left, and for

a maximum g is the greatest latent root. The kinetic energy is

%{g-\-M-^)TX\

The least latent root answers to minimum kinetic energy. For a maximum
or minimum angular velocity deal similarly with the equation

{p-Yy)c^-\p + Yy)k=g'X.-\

Ex. 8. An impulsive wrench (/x, A) is applied to a free rigid body
moving with the instantaneous twist-velocity (cr, w). The change in the
kinetic energy is rp_

s(a,/,4.o-A),

where T is the kinetic energy that would have been generated were the

body at rest.

(a) With the same meaning for T, show that the wrench

(/x, A).S((0)U-ho-A).^-i

on the arbitrary screw (/x, A) leaves the kinetic energy of the body
unchanged.

{h) The centre of mass being base-point, any wrench on the screw
(<^o), Ma-\ acting on the body when moving with the twist-velocity (o-, w),

leaves the screw of the instantaneous twist-velocity unchanged.

Ex. 9. Two bodies collide. Assuming that the impulsive interaction up
to a certain stage of the impact is equivalent to a single force (A) at the

point of contact, the equations of motion are

Jfj (cTj' - o-j) = A, <^i (w/ - Wj)=Va^A ; M^icr^ — (t^= — A, ^^ {i3i.{ — oi.^= — Va2A,

where (ctj, Wj) and (o-/, Wj') are the twist-velocities of the body J/j just

before the commencement of the impact and at the particular stage of

the impact under consideration, the centre of mass of J/j being base-

point ; where (j>^ is the inertia-function of M^ corresponding to its centre of

mass, and where a^ is the vector from the same origin to the point of

contact ; cTg, Wg, o-g', w.2', <^2 ^^^ ^2 being in like manner related to the body
J/2 and to its centre of mass.

(a)' TBhe relative velocity of the points of the bodies in contact is

o-/+ V(o/ai - 0-2' - Vwg'ttg= o-j -H Vwittj - cto, — YfJi^d-i+ {M{~^ -\- ^^2"^) ^

+V . (^j-iVaiA . tti -hV . (/)2-^Va2A . aa ;

or briefly, it is T'= T-f-^A,
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where ^ is a certain self-conjugate function determined by the circumstances
of the impact and where t is the initial relative velocity of the points in

contact.

(6) For perfectly smooth bodies, VAv= 0, where v is the normal to the
bodies at the point of contact, and the value of A corresponding to the end
of the "first period" of impact is

and the twist- velocity of the body J/j immediately after the impact is

where e is the coefficient of restitution.

(c) The total loss of kinetic energy is

-(1-^2)8x1/2. (Sv4>v)-i.

(d) For perfectly rough bodies, YtV= 0. The value of A corresponding
to the end of the first period of impact is A= —^~W, and the twist-velocity

immediately after the impact is

(o-i - (1 + e)Mc^^-W, (Oi - (1 -f e) cfi^-Wa^^-W).

(e) For perfectly rough bodies, the loss of kinetic energy is

-(l-e2)ST<l>-iT.

Art. 123. When a rigid body is not perfectly free but
constrained in any manner an impulsive wrench will in general

be partially neutralized by the reaction of the constraints.

Referred to the centre of mass as base-point, we have for a

quiescent body,

Mcr = \ — X^, (pCO = JUL
— jUL^, (l.)

where (/m, \) is the impulsive wrench and (yu,, X,) the wrench on
the constraints, or where ( — /ul,, —\) is the reaction of the

constraints. In order to determine the instantaneous motion
produced by the impulsive wrench (nx, X), it is necessary to know
the evoked wrench (jul^, \). We consider the case in which the

constraints are smooth, or so that no evoked wrench can generate

any motion. In this case the work done by the wrench (/x,, X,)

must be zero, or we must have (Art. 122 (vii.))

S(/x,(o+ X,o-)= 0, (II.)

where (/x,, X,) is any wrench arising from the constraints and
where (cr, w) is any possible twist velocity of the body. The
screws of (yw,, X,) and of (a-, co) are said to be reciprocal w^hen

this condition is satisfied; and for smooth constraints, every

possible twist velocity is reciprocal to every possible ivrenck

arising from the constraints.

A body with one degree of freedom can move only one way
from a given position, by a twist about some definite screw

(o-i, ft)i). A body with two degrees of freedom can move in a
singly infinite variety of ways from a given position ; if (o-^, w-^

and ((72' ^2) ^^^ ^^^ screws about which the body can begin to
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twist, it can begin to twist about every screw of the two-system
{x^(T^-\-Xc,a-2, x^(jo^-\-X2w^, where x^ and x^ are scalars, as easily

appears from the composition of small displacements (o-jd^p Wjd^^)

and (o-gd^g' ^2^^2)- Similarly a body with n degrees of freedom
can begin to twist about any screw of the Ti-system (Sa^jo-^, ^x^ud^,

where ((Ti, cDj) ... (o-„, ft),i) are n independent screws about which
the body can begin to twist; and being given n independent
screws about which the body can begin to twist, all possible

initial motions belong to a given system of twists. Every
wrench reciprocal to n independent screws of the freedom is a
wrench arising from the constraints, for every such wrench is

reciprocal to every possible twist on account of the linear

character of the condition of reciprocity (ii.), and no such
wrench can generate any motion in the body. By expressing
that a wrench (/x^, X,) is reciprocal to n screws of the freedom,
the number of its arbitrary constants is reduced from 6 to Q — n
since n conditions (ii.) must be satisfied ; and thus the screws of

the constraint compose a system of order (6 — ?i). This system
can be determined when the system of the freedom is known,
and conversely.

Again knowing the system of screws of the freedom we can
determine what Sir Robert Ball calls the screws of the reduced
wrenches. A reduced wrench causes no reaction on the con-

straints ; it produces the same initial motion as if the body were
perfectly free. In equations (i.) the wrench (yu— /x„ X— A,) is a
reduced wrench, or (^co, Ma) is the reduced wrench corresponding
to the twist velocity (o-, o)). The system of screws of the reduced
wrenches is (02a;^ft)i, M^x-^a-^) when that of the freedom is

Suppose now that we select n independent screws of the

'71-system of the reduced wrenches and Q — n screws of the

(6 — '?^)-system of the constraints, and that (Art. 102) we resolve

an impulsive wrench (/x, X) into its components on these six

screws, we shall have (compare (xvi.), p. 166),

/>t = M +M., X = V+X„ (III.)

where (yu", X') is the component of (yot, X) belonging to the system
of the reduced wrenches and where (/x^, X^) is the component
belonging to the system of the wrenches of the constraint.

The instantaneous twist velocity is then given by the relations

a- = M-^\\ w= (p-y (IV.)

Ex.'l. Prove that

represent respectively a three-system of screws (fx, A) and the reciprocal

three-system (fx', A'), <ji being a given linear vector function and A and A'

being arbitrary vectors.
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[Compare Art. 102 (iv.), and observe that if (/x', A') is reciprocal to every
screw of the system (jjl, A), we must have S(ju,/V-f-^t'A)= or SA(^'A' + /a')=
for all vectors A.]

Ex. 2. Determine triads of co-reciprocal screws of a three-system.

[If the screws (/x^, A^), (/xg, A2) and (ug, A3) of the system /x= <^A are

mutually reciprocal, SAi(<^ + ^') ^2= ^j SA2(^+ <^')A3= 0, SA3(<^+ <^')Ai=0 ;

or Ai, A2 and A3 are parallel to mutually conjugate radii of the quadric

S/3(<^+ <^')/o= const. Thus

x,\\(<i>+ct>rk A^iKc^+c^rV, x,\\{4>+<t>rh

where i\j and k are three mutually perpendicular unit vectors.]

Ex. 3. Determine sextets of co-reciprocal screws.

[Take any triad of co-reciprocal screws of a three-system /jl= ^A, and any
triad of co-reciprocal screws of the reciprocal system /x= - ^'A.]

Ex. 4. Resolve a wrench (or twist) into its components on six co-

reciprocal screws.

[If {fjLi, Aj) . . . (/xg, Ag) are the six co-reciprocals, we can find a linear

function cj) so that (/Xj, A^), (jUg, Ag) and (/X3, A3) belong to the system /x'= <^A';

and then (ju^, A4), (/x., A5) and (/Xg, Ag) will belong to the system /x"= -cfy'X".

We assume for the given wrench (/x, A) that /x= ^A'-<^'A" and A= A'-t-A" ;

whence we have generally A' = (</> -f ()^')~\/x -f c^'A) and A" =-{(f> + (/)')~-'(/x - t^A),

and it only remains to resolve A' along A^, A2 and A3, and A" along A4, A5 and
Ag in order to obtain the required relations /x= 2^j/Xi, A= 2^iAi.]

Ex. 5. Find the {n - 6)-system reciprocal to a given 7i-system.

[This has been effected in Ex. 1 for n = 3. Let n= 4, and for any three

screws of the system construct the function cf). Resolve any fourth screw
(/x„, A,j) as in the last example, so that /x„ = <^A' — ^'A" and A„= A'-|-A", and
take two vectors A5 and Ag which with A" compose a mutually conjugate

triad with respect to Sp((f) -f ^')/o = const. Then

(-^5(^'A5-^6<^'Ag, ^sA.^+ ^gAg)

is the two-system reciprocal to the four-system. To determine the four-

system reciprocal to a given two-system, take any function <^ satisfying

/Xj = (^Aj, /X2= <^A2, where (/Xj, Aj) and (/xg, Ag) are two screws of the two-system,

and determine the vector A3 conjugate to A^ and A3 with respect to the

quadric S/o((^ -!-</)')/)= const. The required four-system is

(^gC^Ag - C^'A', ^gAg+ A'),

where A' and .^3 are arbitrary. Similarly we may proceed in other cases.]

Ex. 6. Show that

S (/xA' -f /x'A)= (;? -H p') SAA' -f S(y - y') A A',

where p and p' are the pitches of the screws (/x, A) and (/x'. A'), and where

y and y' are the vectors to points on their axes. Interpret this result,

and show that
— S (/xA' -f /x'A)= (p +p') cos u + d sin u,

where u is the angle and where d is the shortest distance between the axes.

Ex. 7. A body twisting along the screw (0-1, w^) is suddenly constrained

to twist along another screw (erg, W2). Determine the motion.

[If (^cTj, x(t){) is the twist velocity just before the change and (yo-g, ^002)

that just after, we have

M{y{(T2 — V/DWg) — x(cri — Ypuii))= A, y<^w2 — ^(fio)^=
ij^
— V/)A,
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where (fi, X) is the wrench arising from the constraint which produces the
change of motion. This wrench is recipi-ocal to (cto, W2), so that

S (fr2A + (Og/jt) = 0.

Substituting we easily find 1/ to be given in terms of ^ by the relation

Ex. 8. A body oscillates under the action of a conservative system of
forces, and at a certain part of its swing the motion is suddenly changed from
a twist about one given screw (ctj, Wj) to a twist about another (o-„, Wg).

Show that the twist velocities just before the sudden changes of motion at

the beginning and end of a complete oscillation are in the ratio

(J/o-^^ + SMi(f>(j){) (Mcr.f + 80)2^102) : (J^/So-iO-g+ Sbi^cfxo^y,

the base-point being coincident with the position of the centre of mass at
the instant of the change of motion.

[This is the general case of a self-closing gate. By the last example

yiMfj^- -I- Sw2</)a>2) =^( J/So-jcrg+ Sw^c/xog)

and y{M Swicra+ Sw^c^cog) = x' {Mg-^+ S(o^(/)0)j),

where x : x' is the ratio of the twist velocities just before the change from
the screw (o-j, w^) to the screw (o-g, Wo) and just after the change from (0-2, w.,)

back to (o-j, Wi). The system of forces being conservative, the magnitude of

the twist velocity throughout the partial oscillation during the continuous
part of the swing depends solely on the position of the body, and is the same
just after the sudden change from (o-g, (02) to (o-j, Wj) as just before the next
sudden change from (o-j, w^) to (0-2, Wg). To show that x is greater than x' or
that (3/0-1'^ + Sa)i<^w,)(JI/cr2^-|-S(02<^W2)-(3/So-iO-2-|- 8(0^(^0)2)^ is positive, turns
on the fact that a^p^+ y^S"'^ — 2Sa/3Sy8 is positive when a, ^, y and 8 are real

vectors. The value of this expression lies between the limits (Ta/i^ i TyS)^.]

Ex. 9. An impulsive wrench reciprocal to the instantaneous twist
velocity of a free body at the moment of its application increases the kinetic

energy.

[The change of kinetic energy (Art. 122 (xi.) is - ^S/x<^~V - ^i/~^A^, and
this is equal to the kinetic energy which the wrench would generate were
the body at rest.]

Ex. 10. Determine the dynamical constants and the constraints of a
rigid body by observing the effects of impulsive wrenches applied to the
body when placed in a given position.

[Let (/Ai, Aj), (/x,i, A,i) and (o-i, Wj) represent an impulsive wrench, the
corresponding opposing wrench arising from the constraints and the twist

velocity produced. We know (cr^, Wj) by observation—that is, a screw of the
freedom. A second impulsive wrench (/Xg, Ag) being applied, we find a
second screw of the freedom (cr2, W2), provided we have not o-g= tcr^^ Wg= ^Wj. In
this second case, however, we have a screw of the constraint, for the impulsive
wrench (/Xa-if/Xi, A2-^Ai) generates no motion. Administering a third

wrench we obtain similarly either a new screw of the freedom or a new screw^

of the constraint ; and from the results of applying six independent wrenches,
the screw systems of the freedom and of the constraint become completely
known. These systems being known, we can by (m.) resolve an impulsive
wrench.

(/j^i,
Aj) into the reduced wrench (/x/, A/) and the evoked wrench

(/^/ij -^/i^J ^^^ '^^ have as many sets of equations J/(o-i — V/3Wi) = A/,

(^(Oj = /x/ — V/oA/ as degrees of freedom. For one degree of freedom, the

first equation gives the mass i/= SwiA/ : Sw^o-^ ; and a line locus

V(Oi (/jSwiAi' - Vo-iA/)=
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for the centre of mass. Eliminating p between this and the second equation,

the result is

V. Yui^XiXfXi — (^(Oi)SwjAi'= Ai'SVwiAi'Yo-jAi';
or separately,

SA/(/)Wi = SA/ju,/ and Swi^w^ = S(a)i/Xi' + crjA/) — A/^So-iWi(SwiA/)~\

The body has therefore a given moment of inertia (Swi~^^(Oi) round Wj, and
a given product of inertia ( — SUa>i<^UA/) with respect to Uwi and-UA/ ; but
it is otherwise indeterminate.

For two degrees of freedom, the two force equations completely determine

p, and the couple equations give completely ^cu^ and cfxn^- There remains
only one unknown constant, the moment of inertia (SVa>jCU2~-^<^V(OiW2) with
respect to the line perpendicular to Wj and Wg.

The dynamical constants are completely determinate in the case of three

degrees of freedom. Compare generally Art. 122, Ex. 6.]

Ex. 11. Two three-systems of screws can be in one way correlated, so

that each screw of one system, regarded as an impulsive screw, corresponds

to a screw of the other system regarded as an instantaneous screw. (Ball,

Treatise, Art. 318.)

[This has been virtually proved in the last example. We have to show
that if cr= <j!)j(o and /x= ^2'^ ^^^ ^^^^ three-systems of screws, it is possible to

design and place a rigid body so that Jf(a- — Y/oco) = A and ^(jo = /x — YpA
become identities when cr and fx are replaced in terms of A and (o and when
a one-to-one relation is established between A and w. Substituting for /x

and cr, we have i/(<^i — Y/o)(o= A and
<f)0)

= (cf)2 — yp))^, so that

cf><^= M{cty,-Yp)(<f^,-Yp)X^M(cl>,'+ Yp)(<t>2'+yp)K

remembering that
(f)

is self-conjugate, and this holds for all vectors A. Hence

(<^2</>i
-

<^i'</>2') ^ - ^Xi^'^ - yX2P^= Oj

where Xi ^^^ X2 ^^'^ Hamilton's auxiliary functions for
(f)i

and ^3- And
because A is perfectly arbitrary, we have (xi + X2')/o= 2^2i i^ ^21 i^ ^^^ spin-

vector of ^2<?^i-
Thus the vector to the centre of mass is 2(;)(i-f ;)(2')~^^2i?

^^^
hence i/-^<^ is expressed in terms of cf)^ and of </)2. The two three-systems

are connected by the relation M{(f>^-2y{-x^i + X2)~^^2i)^^K so that to each

screw of one system corresponds a definite screw of the other.]

Ex. 12. Screws {fx, A) and (cr, co) are connected by the relations

A= (^jcr -H (^2^5 /x= <^3a>-l-^4cr,

where c^j, cf)^, (f>2 ^^^ ^4 ^^^ ^^^^ given linear vector functions. Find the

conditions that {jx', A') should be reciprocal to (cr, w) whenever {fx, A) is

reciprocal to (o-', w').

[The general relations of this example establish a homography between
screws (/x. A) and (o-, o)) ; and w^hen the conditions of mutual reciprocity are

satisfied, the homography is said to be chiastic (Ball).
,

The conditions are simply

S (Act' -f jaw')= S (A'cr -f /x'w)

or Scr'(<^iCr-h^2w)+ ^^'(^3^ + ^4^)= So^(^i<^' + ^2^') + Sw(^3w'+ ^40"'))

where w, o>', cr and cr' are arbitrary vectors. Putting w and to' both zero, it

appears that ^^ must be self-conjugate. In like manner (^3 is self-conjugate,

and the condition reduces to So-'(^2"~ ^4')^ = ^o-(*^2 ~"
4^\)^'i which requires (^4

to be the conjugate of ^2- Thus the general chiastic homography is defined

by relations of the form

A= (^jO- -I- (/)20), IX= <^3(0+ (f)2Cr,

where cf)^ and (f>^
are self-conjugate.]
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Ex. 13. The screws of impulsive wrenches applied to a free rigid body
at rest in a given position (or the screws of the reduced wrenches applied to
a constrained body) are in chiastic homography with the screws of the
corresponding instantaneous twist velocities.

[Here A= Jf(o- — V/aw), n=(f>o)+ MYp{(r—Vp(D) and the conditions are
satisfied. This may be seen still more simply by taking the base-point at the
centre of mass.]

Ex. 14. The united screws of a chiastic homography are co-reciprocal.

[For a united screw /i,=^(r, X.=x(i), and for a second united screw /x'=j;V,

X'= x'(ii\ and hence ^S (o-a>' -f o-'w)= S (/xw' -f- o-'A)= S (/x-'o) -f crA')= ar'S (cr'to+ o-w'),

so that the screws are reciprocal or else x=x'. In the latter case every screw
of the system (o-+ io-', w-f-^w') is easily seen to be a united screw of the
homography. The theory is quite analogous to that of the axes of a self-

conjugate function. The united screws in the general homography are to be
determined by solution of the equations ^w= <^iO--f-<^2*^j ^cr= ^jtu -}- ^^o-. On
elimination of o-, we have

Compare Art. 115 (x.), p. 186.]

Ex. 15. There are n real principal screws for every position of a rigid

body having freedom of the nth. order, so that the body will begin to move
from rest along one of these screws when a wrench is administered on that

screw.

[For the centre of mass as base-point, if (/a, A) is on a principal screw, we
have fjL=xa', A= :rw and also fx — fx^= (fao and X — X^=M(r. Now if ((Tj, (Uj),

(o-g, (02), etc., are screws of the freedom we deduce from these expressions the

n conditions

xB ((TjO) -1- (TWi)= S(x)(f)0)i + J/So-cTi, etc.

;

because the evoked wrench is reciprocal to every screw of the freedom.

Also w=2^„(o„ and (r='2tn(rni and on substitution for &> and cr and on elimi-

nation of the scalars t, a determinant of the nth order in x is obtained.

Putting X equal to one of the roots of this equation, the scalars t can be
found from n — loi the conditions.

Just as in the case of self conjugate functions, if a root x is imaginary

(x'+ xJ -Ix"), the corresponding principal screw is imaginary

(o-'-hV^o-", A'-t-V^A"):

and there is a conjugate principal screw (o-' — v — 10-", A'-v — lA"). By the

last example these screws are reciprocal, and we find that

S(o'(f)(x>'+ M(r'^+ So}"<f)(D" -f- J/o-"2

must vanish. This cannot be because the energy of a body moving with a

real twist-velocity (o-', co') or (o-", w") is essentially positive.]

Ex. 16. A body which is imperfectly free moves under no applied forces.

Find the conditions that the instantaneous screw should be permanent.

[When the instantaneous screw is momentarily stationary it is said to be

permanent (Sir Robert Ball). For the centre of mass as base-point, the

equations of motion are

M(&+ Y(o(r)= —^,, (f)U)+ Yo)4>(i)= —r]^f

where (*«„ J,) is the evoked wrench. The condition of reciprocity gives

Sco<^o>-f-l^So-6-=0 ; and for a permanent screw 6)=x(o, &=xa; and we must
have ^=0 because Sw^w+ i/o-^ is essentially negative. By means of the

equations of constraint we can eliminate ^, and 17^ from the conditions

MY(OCT= —^,f Y(a<f>oi= —rj,."]

J.Q. O
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Ex. 17. To find the principal and the permanent screws for freedom of

the third order.

[Here (r=cf>^it) where (f>i
is a given linear function, and the screws of the

constraint belong to the reciprocal three-system /x,= —
4>i X^. For a principal

screw

<f>(i> =j;(r — fx^= xcfi^u)+ ^I'A,, J/^^w =X(a — X,;

so that CO is an axis and x a root of a determinate linear vector function.

For a permanent screw,

Y(o<f>(i)= —ri= <t>ii,i MVoxfiiCi)= — ^,;

and on elimination of ^, we find

and 0) is now an axis of the new linear function <fi
— Myj/^i.

In the special case of rotation about a fixed point the principal screws

coincide with the permanent screws.]



CHAPTER XVI.

THE OPERATOR V.

(i) The Associated Linear Functions.

Art. 124. In Articles 54-57 we investigated some funda-
mental properties of the operator V, and we propose in the
present chapter to supplement and develop the results already

obtained and to illustrate the application of the operator to

physical investigations.* Compare pp. 69-77.

In the first place we shall consider the invariants and the
auxiliary functions for the linear function

<pa= —SaV.cr, <j)'a= — VSatr, (l.)-

* Hamilton's writings on the operator V consist, so far as I am aware, and I
have searched through his manuscripts in the library of Trinity College, of a
communication to the Royal Irish Academy (July 20, 1846) which is published
in the Proceedings, Vol. iii,, p. 291, and practically reprinted in the Phil. Mag.
of the following year, and of Art. 620 of the Lectures on Quaternions. In the
Lectures he writes :

" The bare inspection of these forms may suflHce to convince
any person who is acquainted, even slightly (and I do not pretend to be well
acquainted), with the modern researches in analytical physics, respecting
attraction, heat, electricity, magnetism, etc., that the equations of the present
article must yet become (as above hinted) extensively useful in the mathematical
study of nature, when the calculus of quaternions shall come to attract a more
general attention than that which it has hitherto received, and shall be wielded,
as an instrument of research by abler hands than mine." He denoted the
operator by the symbol <1 . In the Elements the operator occurs in a disguised

form in Art. 418 (v.), V being replaced by -Da where a is the vector operand.
In the first note to Art. 422 of the same volume and in a letter to Dr. Salmon
(Graves's Life, Vol. iii., p. 194), he announces his intention of concluding the
work with a brief account of a "quaternion transformation of a celebrated equation
in partial dififerential coefficients, of the first order and second degree, which
occurs in the theory of heat, and in that of the attraction of spheroids." Un-
fortunately the volume was left unfinished at his death.

The applications, predicted by Hamilton, have been made by the able hands
of Tait, as will be seen on reference to the volumes of his collected Scientific

Papers (Cambridge, 1900), and to the last edition of his Treatise on Quaternions

(Cambridije, 1890). M'Aulay has also made valuable additions to the subject in

his Utility of Quaternions in Physics (Macmillan, 1893), and the note in the

Appendix to the new edition of Hamilton's Elements (Vol. ii., pp. 432-475) may
perhaps be consulted with advantage.

No satisfactory name has been proposed for the operator. The author prefers

to call it Hamilton'a delta or more generally delta.
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which we noticed in Arts. 112 and 113 in connection with the

theory of heterogeneous strain. See p. 181.

When the points of a field receive a small continuous dis-

placement so that the vector to a point changes from p to p-\- a-dt

where d^ is some small scalar and where o- is a continuous

function of p, the vector p-\-a to a neighbouring point 'changes

into p+ a+ (cr-h^a)dt The vector line-element a at the ex-

tremity of p accordingly changes into a+ 0a . d^. The vector

area-element Ya^ becomes V(a+ 0a . dt){^ -f (p^ . d^), or, neglecting

the square of d^, this is (Art. 65 (iv.), p. 91)

Va^+V(a0^+ 0a^).d^ or Ya/3
-\-
xYa/S .dt

The volume-element — Sa/3y changes into

-Sa/3y-ES0a/3y.d^= -.Sa/3y(l+m"dO

when we neglect the square of d^. If cr denotes the velocity of

the points in the field, varying from point to point, and if d^ is

the element of time ; if dp, dp and dv are respectively a vector

line-element, a vector area-element and a volume-element, at the

extremity of the vector /o, the rates at which these elements

change are

'Dt.dp= <pdp, 'Dt.dv= xdv, T)t.dv= m"dv; (ii.)

and these relations clearly indicate the meanings to be attached

in this case to </>, x ^^^ ''^'- The scalar m'' is called the

divergence and SVar is the convergence.

Again the small strain at the extremity of p due to the dis-

placement adt may be resolved into a pure strain, which converts

a into a+ J(0+ 0')a.d^, and a rotation represented in magnitude
and direction by ed^ where e is the spin-vector of (p ; for we have,

a+ 0a. d^ = (l-fVe.dO(a+ 0o«-dO = (l + 0odO(«+^^«.dO
when we neglect dt\ Hence the spin-vector e represents in

magnitude and direction the angular velocity of the element at

p when 0- denotes the velocity of its points in the field.

It remains to exhibit e, m'' and x in terms of a. We have for

any three vectors

V/3y . 0a+Vya . 0/3+ Va)8 . 0y
= - (V/3ySaV+VyaS^V+ Va/3SyV) . cr

= -VaSa/3y= (m''-2e)Sa/3y;

and the first quaternion invariant (Art. 67, Ex. 7, p. 97) is

m"- 2e= - Vo-, and m" = - SVo-, e= JWc (ill.)

Further, x<^ = ^^^<^o-> x«= -^•^"^•o', • (iv.)
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because, for example, xa= (w"— ^)a= — SVo- . a+SaV . a-. It is

evident that x ^^^ ^ have the same spin-vector. The vector
2e or VV<r has been called by Clerk Maxwell the curl of the
vector (T.

The function \f/ and the invariants tyi and m are related to
the transformation which converts vectors p into vectors o- where
o- is a given but arbitrary function of p. As in Art. 63, if do-,

dj'aC = Vdo-dV), and dt;^( = — Sdo-dVdV), are the elements into

which the elements dp, dv and dv at the extremity of p trans-

form, we have dcr= 0dyo, dva— ^y^v, dv^= mdiv. To calculate \jr

in terms of o- it is necessary to use temporary marks to associate

the corresponding operator and operand, and we find (p. 90)

^Va^= V0 a0'/3= VVSao- . V'S/3(r'=VVV'Sao-S^o-'.

Now we may also put

,/rVa/5= VV'VSao-'S^o-=-VVV'Sa(r'S^o-,
.

.

•.
'

so that on addition,

or for an arbitrary vector y,

^y=_iVVV'So-(rV iry=-iSyVV\Ycr(T\ (v.)

and in these expressions the accents are to be removed after the
performance of the indicated operations.* ,

,,

Just as in (ill.) we find the quaternion invariant of xfr',

m'-20e=-iVVVTo-o-', (vi.)

remembering that (f>e is the spin-vector of xfr' (Art. 68, p. 98).'

Thus m'=-iSVVVTo-(7', ^€= iY .YVVYcct', (vn.)

and this expression for (pe should be verified by operating with

(p on the value already obtained for e.

It is also a useful exercise to verify that the third invariant is

m= iSVV'V''Sa-o-V', (VIII.)

.(IX.)

but a more familiar form of this invariant is
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which is obtained by putting p=:ix-{-jy-\-kz, cr= iu-]-jv-\-kw

^=-^^^^^^^=-^9^9^^^ (X.)

Ex. 1. Show that in terms of i, j and k,

Ex. 2. In terms of three arbitrary differentials of p and of the corre-

sponding differentials of o-,

Sdo-d'o-dVJ 2dorSad'pd"p
,

2dpSd'o-d"(

Sdpd'pd"p Sdpd'pd"p Sdpd'pd"p

Wl"+2€=2do-.Yd>d>
Sdpd>d'>~'

„ ,
_2dp.YdVdV

'^'^'~ Sdpd>d> •

(a) If 6.p=cf)^dcr, write down the corresponding functions for
<f)^,

and find

the relations between them and those for
(f).

Ex. 3. Prove that

'dx

'dw

dy
'dw

'bx

'du

2i
'du

'dx

'by

tv

bv

'dx

'dw

'dy_

'dw

'dz

= 1.

Ex. 4. If (T, a vector function of p, satisfies a scalar equation /(o-)= for

all values of p, the third invariant m of the function <^ vanishes ; and con-
versely if m vanishes o- satisfies an identical relation.

[If do- is the differential of o- corresponding to an arbitrary differential

of p, we have d/(cr)= or (say) S/>ido-=0. Hence the three differentials

of cr corresponding to three arbitrary differentials of p are coplanar and
Sd(rd'a-d"(r=0. Conversely, if m is identically zero, three differentials of o-

corresponding to three arbitrary differentials of p are linearly connected, or
Mor-}-Z'd'o-4-rd"o-=0, suppose. Hence cr can receive only two independent
variations, or a relation of the form/(o-)= must be satisfied by tr.]

Ex. 5. If (J satisfies two scalar relations /i(<r)= and /2(cr)= 0, the
function "^ must vanish, and conversely.

Ex. 6. If/((r)= 0, and if we write d/o-= Sjadcr, we shall have ^'p,=0.

Ex. 7. If a- is a function of p and if do-=^dp, prove by comparing the
operators d= — SdpV= - SdaVa, that

where Vo- operates on a function of cr in the same manner as V operates on
a function of p. (Tait's Quaternions, Art. 480.)

Ex. 8. If <;^dp is the differential of a vector function of p,

VV</>'a = 0,

where a is an arbitrary constant vector ; and if it is possible to find a scalar

multiplier to render <^dp the differential of a vector function,

[Note that (/>'a=-VSa(r if <^dp=d(r.]
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Ex. 9. If Ci and C^ are the principal curvatures of a surface w= const.,

show that
^^ ^ ^^_ _ svxjVw, (7iC2= - ^SYVVVUVi^VV.

[See my note, Elements^ Vol. ii., p. 251. If t-^ and Tg are tangents to the
two lines of curvature,

(7iTi + StiV . UV?^= 0, C^r^+ SrgV . UVw= ;

and (Ex. 4), since TUVw= 1, the third invariant of the function — SdpV . UV?«
is zero, and Cj, CU and zero are therefore its latent roots.]

(ii) Integration Theorems,

Art. 125. It has been shown in Arts. 55 and 56 that the

form in which the operator V naturally presents itself leads to

the two results (pp. 72 and 73).

{du.q = Vq.dv, {dp.q = Y(dv.V).q; (l.)

the first integral being taken over a small closed surface of

which dv is an element of outwardly directed area while dv is

the included volume ; and the second integral being taken along

a small plane closed curve of directed area dv, where rotation

round dv in the direction of the circuiting is positive. In both

relations g is a quaternion function of the variable vector p.

In order to extend these results to integration over finite

regions, we shall first suppose that the quaternion q satisfies

certain conditions:

—

(a) that it is free from discontinuity, (b)

that it is single-valued, (c) that it does not become infinite at

any point of the region. Further we suppose (d) that the region

included in the surface over which we propose to integrate is

simply connected, so that any closed circuit drawn in that region

can be made evanescent by continuous variation without cutting

through the surface.

On these suppositions, we divide the region within a closed

surface into infinitesimal parallelepipeds, and we apply the

theorem of Art. 55 to each. Adding together the integrals

I di/ . g over the faces of these parallelepipeds, the sum obtained is

equal to the sum of the corresponding elements Vq . dv, but over

an interface corresponding to two parallelepipeds the directed

elements are opposite, so that if one parallelepiped contributes

an element dv . q, the other contributes an equal and opposite

element —dv.q; consequently the sum of the integrals \dv . q is

the integral over the bounding surface. IVIoreover the sum of

the elements Vq . dv is the integral I Vg . dv throughout the

volume, and we have \dv . q= IVg . dv, (n.)
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where the first integral is taken over the surface and the second
throughout the volume.
Under the same conditions we can fill up any continuous

closed curve by a net-work of parallelograms described on any
surface terminated by the curve, and if these are all circuited in

the same direction the elements contributed by the common sides

cancel, and
^dp .q=^V{d..V) .q. (iii.)

where dp is a directed element of the curve and di^ a directed

element of the surface. Hence it follows because (iii.) has a

value independent of any particular surface through the curve

that over any closed surface

fv(di/.V).g = 0. (IV.)

(a) Suppose a surface to exist over which q is discontinuous, and imagine
the region of the volume integral to be divided into two regions by the

surface of discontinuity. Applying (ii.) to each of these regions and adding,

we find

\Vqdv= \dv.q-{-ldvi^{qi-q2),.. (v.)

an element of the surface of discontinuity furnishing the parts

di/12.5'1 and dv^i.q^j or dv^^iq^^-q^).

(b) If q is not single-valued, it is not hard to see when infinite values of

Vq are excluded from the region that, assuming any one of its values for q
at any point of the region, the value of q at every other point of the region
is determinate. In fact starting from a point p with a given value of q we
can return to p with a different value only if we thread some circuit along
which q is indeterminate ; and if q is indeterminate anywhere within the
region, its corresponding deriveds must be infinite, which is contrary to

supposition. When a curve locus of indeterminate values of q exists in the
region, we may enclose it in a tube and so isolate it from the region. The
region thus becomes multiply-connected (d),

(c) If q becomes infinite at any point, we exclude that point by a small
sphere concentric with it and we take account of the surface integral over
the sphere, the vectors representing the elements of directed area being
drawn outwards from the region, that is, towards the centre of the sphere,
and the radius of the sphere being ultimately reduced to zero.

Taking the origin at the point, the element of directed area over the
surface of the sphere is di/= - Up . r^. dl2 if r is the radius and dI2 an element
of solid angle. Then for the sphere

ldv.q^-\dn.Vp.r\q (vi.)

If over the surface of the sphere

q= qo+r-Kq^ + r-^.q2+ r-^.qs+ etc., (vii.)

the surface integral vanishes unless qo exists, and it generally becomes infinite

or indeterminate if q^, etc., exist. Of paramount importance is the case in

which q contains the term VTp-i. e= - Up . Tp-'^. e. In this case if no higher
negative power of r occurs, the integral becomes

jdv.g'= - jdl2.e= -4776, (vm.)
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and we must replace (ii.) by

lVq'dv= jdv.q-47rey ....(ix.)

the origin being excluded from the volume integral.

In general when 5^3, etc., are zero, by a well-known theorem in spherical
harmonics (Art. 127) we need only consider the terms in q2 which are linear
in U/o and which we may take to be SaJJp+ cfiJJp. Writing \Jp= li+mj+nk
where I, m and n are the direction cosines of Up, and remembering that

jdi2 . ^2= Att, jdl2 . ^m= 0, etc.,

we have

ldn.Vp(SaUp+ <f>Vp)= iTr^i{Sai+ cf>i)= -|7r(a+m"-2e), (x.)

where m" is the first invariant and where e is the spin vector of
<f).

Accordingly
we must in this case replace (11.) by

|V5'.dv=jdi/.^+f7r(a4-m"-2e), (xi.)

where the integral on the right is taken over the boundary and where the
remaining terms are contributed by the surface of the evanescent sphere.

(d) If the region is multiply-connected we render it simply connected by
drawing diaphragms* when we fall back on case (a) if q happens to be
many-valued. A diaphragm corresponds to a surface of discontinuity, and

qi - q^ in (v.) becomes np where p is the cyclic increment of q and where n is

an integer.

Considering now the similar cases of exception for the circuit integral, we
shall suppose

(a') that a surface of discontinuity cuts the given circuit in two points
A and B. Let the surface containing the mesh-work be drawn through an
arbitrary curve acb on the surface of discontinuity. On adding the results

of integration for the two circuits consisting of the part on one side of the
surface of discontinuity and the curve acb, and of the part on the other side

of the surface and the curve bca, we have exactly as in (v.)

\dp.q^\dp^^.{q^-q^ = \YdvV .q (xii.)

It follows from (iv.) that we get exactly the same result had any other
curve ADB been taken on the surface of discontinuity.

(b') If q is not single-valued over the continuous net, its value is definite

if a definite value is chosen at some one point of the net, or else q is inde-

terminate at some point of the net. Such a point may be surrounded by a
small closed curve joined by a barrier to the circuit. The barrier must be
treated as a line of discontinuity and the value of the integral round the
closed curve must be taken account of.

(c') When q becomes infinite at a point on the surface of the mesh-work,
let the point be surrounded by a small circle of radius r. Then the relation

becomes, when we exclude the point from the surface integral,

\YdivV.q= \dip .q-\rdJJp . {qQ+ q^r-^+ q^r-'^+ etc.\ (xiii.)

the second line integral being taken round the circle.t This integral

vanishes unless there are negative powers of r. The part depending on qi is

jdUp . q^ = jdU/> . (SaU/3+ <f>Vp)

*Th§ interior of a hollow curtain rir.g becomes simply connected when a
diaphragm is drawn across one normal section.

+ The two line integrals are taken in the same sense of rotation round the axis

of the small circle. If we choose the minus sign may be placed on the right of

the sign of integration, and then we shall have the surface integral equal to the
sum of two line integrals taken in opposite directions.
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suppose where </> is a linear vector function, the terms not linear in JJp

leading to a vanishing integral round the circle. Putting Vp= i cos w+j sinw
where i and j are in the plane of the small circle, the integral easily reduces
to 7r{jSai— iSaj+j(f>i — i(pj\ and to 7r(Va^ — X'^+ 2Se^) where x' ^-^d € have
the same signification as in the chapter on linear vector functions.

^^ Ex. 1. If /(V) is any linear function of the operator V with_ constant

^ coefficients,

j/(dv) . g= J/(V) . ^ . d.;. If(dp) . ^= j/(Vdi^V) . q,

and
J q .f{dv)=

I q ./(V) .dv,
j ^ ./{dp)=

J q ./(Vd.V).

[No step in the proof of the simpler case need be modified. In the

second set of relations the operator is placed in front of the operand. See
Art. 57, Ex. 11, and M'Aulay's Utility of Qiiaternions in Physics7\

Ex. 2. In general if /(a) is a linear function of an arbitrary vector a
while the variable vector p is involved in the constitution of the function,

show that

l/(dv)= j/(V). d^, j/(dp)= j/(VdvV),

where/(V) means that V operates in situ on the variable vector p as involved
in the structure of the function.

Ex. 3. Prove that j ^^= - jSdvV . VTp-\

where no infinites occur.

[See Tait's Quaternions^ Art. 504. Here the line integral is ^YdpVTp~\
which transforms into

jV.Vdvy.VTp-i or j di/V2Tp-i-j Sdi/V . VT^-^.]

Ex. 4. Prove that

\qdv= llp.Vq.dv-^lpdvq,
[This is an example of an extensive class of transformations depending on

the invariantal properties of V. Transforming the surface integral, we
have

^
pdvq=

j p{V)qdVf where V operates both on p and on q. But
pS/ =Vp=-3. See Art. 132, p 235.]

(iii) Inverse Operations.

Art. 126. We shall now establish general solutions for the
equations

Vp = q, andW= g, (l.)

where g is a given quaternion function of /o ; or we shall assign
definite interpretations to the functions

_p = V-ig and r = V~^q (li.)

for all points of an arbitrarily selected region within which
infinities do not occur.
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We shall first prove the transformation*

\Vu. Vp .dv= \dp. u. Vp— IVi^oVp . dv

= {vu.dv.p- j'v(u-Tp-i)V
. p^dv-4xp (III.)

- in the case in which p does not become infinite within the region,

while u tends to the value Tp"^ at the origin which we suppose
to be taken within the field of integration, and where 47rp in the
third member is 47r times the value of p at the origin. The
suffixes are intended to indicate that the affected symbols are

free from the operation of V.

Surrounding the origin by a small sphere and supposing (V)

to operate in situ on u and on p we have

\ViL .Vp .dv= l(V)t(, . Vp . dv— Wuq^p . dv

= \dv .u .Vp—\ VuqVp . dv

for the region between the small sphere and the boundary, the

surface integral over the sphere vanishing by the last Article

(compare (vii.)). But these integrals may be extended through-
out the entire region, for we shall show that the integrals taken
through the volume of the small sphere tend to zero when the

radius is indefinitely diminished. Within the sphere we may
take u= Tp-i and dv= Tp^.dQ . dTp,

so that {Vu.Vp,dv=-[Up.Vp.dQ.dTp

which vanishes in the limit. A fortiori the integral

I

VuqVjs . dv= |Tp-i
. V^p . dv

for the small sphere vanishes. Thus the first part of (ill.) is

proved.

Again for the field exclusive of the sphere

IVu . Vp . dv= \Vu . (V)2? . dv— \VuV .pQdv

= IVu. dv .p— ^TTp— jVuV.p^dv

by (viii.) of the last Article because for the surface of the sphere

[Vu .dv,p=-\- [Tp-2 . Up . Up . Tp2 . dQ . 29= -[dQp.

*It is manifest from the proof of these relations that they are valid when
neither p nor u become infinite in the field of integration provided we omit the

term in Tp"^ and the term Airp.
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= fVi( . d»/ . p- fV2(u- Tp -
1) . jpd'U- 47ri). . . .(ill.)'

Changing the origin or replacing /o by p—p in (ill.)', and
supposing p to be the current vector in the integrations, we
obtain for the particular case in which u = T{p— p)'^ the
important identities,

^ = j 4.T(,--,) -j 4.T(,-.:,)+J^
'

4^T(p-^,) -^- '^ -a^-)

'^j47rT(p'-p) ''j4xT(p'-/o)'

the second being deduced from (iii.)' by replacing Vu by
V'.T(/o'-p)-i or by its equal -VT(/o'-p)-i and taking V out-
side the sign of integration.

If then Vp = q, we have

and in this relation jp' is any function which over the boundary
satisfies Vp — q.

In like manner -
.

where r is any function which over the boundary satisfies

V^r=q. It may be observed that in these results there is a
certain analogy to the solutions of the linear function equations
of Art. 65, p. 92.
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If we operate on (vi.) by V and put p=Vr we find on com-
parison with the second form of (v.) that

V.V-2g= V-ig ....(VII.)

because the last integral of (vi.) vanishes under the operation
of V (or of —V under the sign of integration operating on
V'T(p'— p)~^) provided p does not terminate on the boundary.

Ex. 1. Find the potential which produces a given distribution of force

in a given field.

If f is the force and P the potential, we have to determine a scalar

function P from the equation ^= - VP. By (v.) this function is

_ ._ _ r svi\dv'
f

sdvt
f
Psdvv.Tjp-prn

"^ ^- j A7rT(p- p')'^ J 47rT(p-pY J 47r J

Ex. 2. A quaternion p which satisfies the equation V^p= throughout a
given region is expressible as a surface integral over the boundary ; and a
quaternion jD which satisfies Vp= throughout the region is of the form

P^-VJ
dv' . p'

47rT{p-py

Ex. 3. A scalar satisfying the equation VP=0 is constant. A vector

satisfying Vo-=0 is expressible in the form (r=VP where P is a scalar

function satisfying V^p^o. \ :

- ;'
. ; •

Ex. 4. Construct quaternion functions of p, homogeneous and of the

first and second orders, which shall vanish under the operation of V.

[For the quadratic function assume p= Sp<f)Qp+ ^a„^p(finp where n= l,

2 or 3. We have Vp= -
2<f>Qp

- 2H,cf)„pan, and if SVp is identically zero the

condition 2^naw=0 must be satisfied. In order that VVp may vanish, we
must have ^oP= — 2V<^„/3a„= 4-2<^„V/oan since <^o i^ self-conjugate. Again,
because ^^p=0, the first invariants of the functions cf) must vanish. But in

general m'Vpa= Yp(f>a+ Y<^pa -h cfiYpa, and in the present case

2V/o</)„a„+2V^„/oot„+ 2<^„V/3a„= 0.

Hence by the former condition — 2V<^„pa„ is a self-conjugate function

provided only that 2^„a„=0, and that the first invariants are zero. Thus

p= -^Span<f>np+ ^0,n^p4>r>Pi

where m„"=0, 2<^„a„=0, vanishes under the operation of V.]

Ex. 5. Determine the extent of the arbitrariness in the dissection of a

quaternion into the parts V~^SVg' and V~^YVq on the supposition that

V~^SV^ is a vector.

[The most general expressions for the parts are V~^SVg'+o- and
y-iyVg'-o-, where o- is a vector satisfying Vo-=0. See Ex. 2.]

Ex. 6. Divide a vector cr into two parts o-i and o-g so that SV(Ti= 0,

VVo-2= 0.

[Here (r2=V~^SVo- and a-i= V"iVVo-. We may calculate one of these,

say 0-2 by the general formula, and the other is o^ — o-g.]
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Ex. 7. The general solution of the equation

may be written in the form

\ m+n n )

[The equation may be transformed into (m+ 72.)VSVo-+7iVVVo-=f, and

by the last example, VSVo-=(m+7i)-iV-iSVf, VVVo-=7i-iV-iVVf. The

solution given above of the equation of equilibrium of an elastic solid may
be expressed more simply in the form (r=V~2(7i~^J-m7i~^(m4-?*)~^V~^SV^).]

Ex. 8. If V2jo= at all points within a closed surface, and if V^^ =_o at

all external points ; if 'p,—'p over the surface and if f, tends to zero at infinity,

"dv\vX/-p/)
47rT(/3'-p) •

[Integrating throughout external space we find if V2p^=0, see note p. 219,

- Jdv' . Vp;.T(p'-p)-^+jv . T(p'-p)-^ . dv' .p;=0,

when p terminates at an internal point so that T(p' — p)~^ does not become
infinite. The surface integrals are to be taken over the closed surface and
over an indefinitely large surface, but it easily appears that the latter part

of the integer vanishes since p^ vanishes at infinity. Putting y^p==0 in (iv.),

remembering that p,=p over the closed surface, and subtracting, we have
the required result.]

Ex. 9. If fnp is a homogeneous function of p of order n satisfying

VY„/3=0, show that

when Tp<a, the integration being extended over the sphere whose centre is

the origin and whose radius is a.

[The function corresponding to the p^ of the last example is

U.{aTp-J-^\
(See Art. 57, Ex. 12.) Here V{p' -p;)= {2n+l)a-^lJp' .f„p' over the

sphere and dv'=U/o'Tdi/'.]

(iv) Spherical Harmonics.

Art. 127. If /n(V) is any rational and integral function of V,

homogeneous and of order n, the function /„V.T/o~^ is a solid

harmonic of order —{n-\-l), for it is a homogeneous function of p
which vanishes under the operation of V^, the scalar operator V^
being commutative in order of operation with /„V. Further
»j<^2n+i y^V X/o"^ is a solid harmonic of order n. (Art. 57,

Ex. 12, p. 76.)

Because we may suppose /„V to be expanded in the form

/nV = SaSaiVSa2V...Sa„V, (l.)

it follows from Art. 54, Ex. 2, p. 70, that

Vn+i./,V.Tp-i = (^)M.3.5 {2n-l){fnp-TpKfn-2ph (n.)
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where /«_2/o is a determinate function of p, homogeneous and of
order ti— 2. Hence we may expand any homogeneous function
of p of positive order n in a series of solid harmonics, of orders n^
n— 2,71— 4, etc.,

/«/^-(_)n.i,3 (271-1)

+v- (_;-..i;i-:::g-5)+^*^- ('"•>

where fn-2P» fn-iP, etc., are functions defined by equations such
as (il).

Any integral of the form P= \pdv .T(p— (t))-^ in which « is

the current vector and in which p is independent of p may be
expressed in the form

P=fV.Tp-\ (IV.)

provided Tp is not less than the greatest of the tensors Tw.

For (Art. 59 (xi.), p. 79),

and we may speak of P as the potential at p due to a distribution

of density p although it is not necessary to suppose that p is a
scalar.

If Q= \qdv. T((a—p)~^ is the potential of a second distribution

of density q, the mutual potential is

I
^=f^=k-^^^'4«-i^ (->

If the second distribution lies outside a sphere of radius a
having its centre at the origin and including the first distribution,,

we have by (v.),

provided we reduce the temporary vector p to zero after the

performance of the operations indicated, and the suffix serves

to remind us of this reduction.

\i Q—gJ^p) is a solid harmonic of positive order n, and if we
suppose the corresponding distribution to be a surface distribu-

tion on the sphere, we may replace

qdv' by (47r)-i.(2ti+ l).a-i.^n(a)').Td,.',
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or by (4x)-^(27i+ l).a'^+^^n(Uft)).dQ,

utilizing Ex. 9, Art. 126, and dropping the accents as being no
longer necessary. In this case (vii.) becomes

47r ./(- V) . g,lp\= {2n+ l)a-^^\^P^gn{^w) . dO (viii.)

In this expression it is only necessary to take account of terms

of order 71 in /( — V), for gnip) vanishes under the operation of

terms of higher order, and the results of operation of terms of

lower order vanish when p is reduced to zero.

If P is a solid harmonic of order — 7i— 1, the form of the

function /V is given by (iii.), and

^nd accordingly (viii.) becomes

47r/n(-^)-5'n/>

= (-r.l.3 (2n-l)(2^+l).f/,(Ua,).^n(Ur^).dfi;...(x.)

while if the order of the harmonic P is — (m+ 1) where m is not
equal to n, we have

J/^(Ua)).^n(Ua)).dQ = (XI.)

Again if

P= T(p-a)-i= e^'^^.T;o-i= STa"Tp-^-M^(U;o), (xii.)

ive find on substitution in (viii.),

.47r^„(Ua)= {2n+ 1)j^„(Uft))^„(Uco) . dO,

= j^^(Ua,)^„(Ua)).dQ

because /( - V) . gn{p)= e "
^*^

. grip)= gn{p+ a).

Hence we can expand any function g(}Jp) in a series of

spherical harmonics, the harmonic of order n being

£f„(u«)=^?:^^J4„(Uco)^(u«.).dfi (XIV.)

Ex. 1. A scalar solid harmonic of order -{n+ \) may be expressed in the

form SajV . SagV Sa„V . Tp-\

where aj, a^, ... an are real vectors.

[Consider the edges common to the cones Fnp= 0, p^=0. These group into

conjugate pairs ^+^1 -1/3' and /3 — *J — l/3\ and each conjugate pair lies in

a real plane Sap=0 where a= Y/3f3'. Having determined the vectors

tti, ttg, ... a„ we have a relation of the form

F„p= p^Fn-2p+

1

. Stti/oSajj/o . . . Sa„p,

.(XIII.)
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where ^ is a scalar and where Fn-op is a homogeneous function of p of order

n— 2. If i^nV is the generating operator (see (ix.)) of the harmonic we have,

on putting V for p in the above relation,

FnV . Tp-^= t. SaiVSagV ... SttnV . T/o-i because y2Tp-i = 0,

and the scalar t can be found by comparing a coefficient.]

Ex. 2. If 3' is a quaternion associated with each element of mass of

a body,

j^dm=/(V) . q^ {T?dm=Vv/(V) . q,

where t is the vector from a point in the body to the element dm, where ^-q

is the value of q at the origin of vectors t, and where Vv operates on/(V) as

if it were a function of a vector V.

(a) The first terms of the function /(V) are

/(V)= if- J/SToV+i{SV*V - ^(.4+5+ 0) V2} _ etc.,

where M is the mass of the body, Tq the vector to the centre of the mass, ^
the inertia function for the origin of vectors r'and A^ B^ C the principal

moments of inertia for the same point.

[We have

j^dm= je
- ^^^dm . q^= \{\ - StV+ ^StV^ - etc.)dm . q^ ;

and because StV2= t2V2+ VrV^, jVtVVrdm=*

V

and jT2dm= -\{A+B-{-C\

the expansion is justified. Again the differential of/a corresponding to da is

d/a= - SdaVa ./a= - {Sdare-^^'dw.]

Ex. 3. A heavy body is placed in a field in which the gravitational

potential is P. The potential energy of the body ( TF), the resultant force

and the resultant couple (A and p) acting on the body and referred to its

centre of mass, are

Tf=JfP+^SV*V.P, A=ifVP+^SV^V.VP, />t=V^VV.P.

(v) Various expressions for V.

Art. 128. We shall now examine in greater detail than in

Art. 57 the various analytical expressions for the operator V
and for V^.

In terms of three arbitrary differentials we may write

V = Xd+XU+X"d", (I.)

where (Art. 54 (vi.), p. 70)

sdpd>dv sdpd>d>' ^ ~ sd^d'yody
^''-^

The operator V^ is now
*^

V2=2:x2d24-2(AXd'd"+X"VdM')+2VX . d, (iii.)

and in the third sum V operates on the vectors X alone and not
on the operand of V^.

J.Q. p
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Remembering that V^ is a scalar operator, this breaks up into*

the two parts

V2= 2XM-^+ 2SXX(d'd'' + d"d')+ 2SV\ . d ; (iv.)

= 2VXV.(d'd"-d"d')+ 2VV\.d (v.)

It is only when the differentials are independent that the

order in which the differentiations are performed is indifferent,

and it is only in this case that we can generally suppress the

terms involving d'd''— d"d' and similar expressions in (v.).

When independent differentials are employed, we use the

expression (Art. 57. (iii.), p. 74),

V^ _^P2P3^
^
^ ^P^Pl A^J[P1P2_ A

;
(VI.)

^PlP2p3
' ^'^ ^PlP2P3

' ^^ ^PlP2Ps
* ^^

'
'

or as it may be briefly written

^ = ''>3^+''^3^+ ''«3^' ^^"•>

where the vectors v^, v^ and v^ satisfy the relations

Sj/ipi+ 1 = 0, etc., Sj/2/03 = 0, Sj/g/og= 0, etc.

;

(viii.)

or again we may put

V = V2..^+V^.|-+ Vt(;.^, (IX.)
^u dv dw

as we see by comparing the results of operation of the forms
(vii.) and (ix.) on u, v and lu. Thus

^^= Vu, i/2 = ^^j p^= Vw (x.)

and VVi/i = 0, VVi/2 = 0, VV,;3= (xi.)

The vectors i/^, u^ ^^^ ^z are the normals at the extremity of p
to the three surfaces u= const, v= const, and w= const which
pass through that point.

The appropriate expressions for V^ are now

V^ = 2..^£+22S.,.3.3^+2SV.,.|^; (xii.)

or V-2(Vu)^^+2SV.V,«.^+2V%.|^. ...(xni.)

Again introducing the operand q for the sake of greater

clearness, we may write

Vq= ,
(XIV.)

^PlP2pS

because the terms which involve the second deriveds of p, such as
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^Pi2p3 • 9' + ^AsPi2 • ^' cancel in pairs. Operating with this form
of V on (vi.), we have

V2=
I

^ [v '^ np2pZ-
^
^ \

I

V ^ pWs • ^PsPl
^

"^
)|,(XY.)

SyQi/Og/Ogl 'dvASp^p^p^' 'duJ 9i6\ ^piP2Ps "dvJ
)'

where the second sum contains six terms, and to this the sign

S may be prefixed. Or in terms of the vectors v it easily appears

that this reduces to

V^= +S,,,{4(3i^^ . ly^l-S^^ •

I)},
(xv:.)

Whenever the surfaces, u = const., v= const, and w= const., are

equipotential surfaces with the corresponding potentials, u, v

and w, the operator V^ is a homogeneous quadratic in the
^ -"i -pi

differentiating symbols — , — , — . This property follows

directly from (xiii.). The converse is also true.

When the surfaces are mutually rectangular, the operator V^
is independent of the products of differentiating symbols. In

this case we find from (xv.) the most convenient expression for

V2=-^—L— .Z^(T.^^.^) (XVII.)

Ex. 1. Determine expressions for V^ where

(1) p=u{(i cos 2v +j sin w) sin v+ ^ cos v}

;

(2) p= u {i cos V+j sin v) + kw ;

(3) p=^{{4> + u){(^ + v){(^^-io)].i, as in Art. 84.

Ex. 2. If a scalar function P of a scalar function u oi p can be found to

satisfy V^P=0, show that

7)2 p 7^p T/2j,

{Vuf . ^+ V22^ . g^=0 and VVi^V . 7X^= 0.
^ ^ ou^ ou (Vw)2

[See (xiii.) for the first condition. The second expresses that VH . (Vw)~^
is a function of «*.]

Ex. 3. Given that a family of surfaces w= const, is an equipotential

system, show that the potential corresponding to u is

f v2w

P=jdi^.e"-'(^«)'' "*.

[See the last example.]

Ex. 4. A family of concentric, similar and coaxial quadrics compose an
equip©£<rntial system. Show that the sum of the reciprocals of the squares
of their principal axes is zero, or else the quadrics are spheres. Determine
also the corresponding potentials.

[Here w = ASpd>p, V^= — ^p, V%= m". The condition of Ex. 2 becomes
Y(l>p<f>^p.m"= 0.]



228 THE OPERATOR V. [chap. xvi.

Ex. 5. Find the condition that the family of surfaces /(/o, «fc)= should
form an equipotential system, and determine the potential when the
condition is satisfied.

[Imagine u to be expressed as a function of p by solution of the equation

f(p,u)=0. On this understanding we may treat /(p, w)= as an identity

and equate to zero the results of operating on it by v and V^. We find

vf+vu . 1=0, vy+2sv«^+ v% |+(v.)^ . ^=o:

where V operates on / as if f were a function of p alone, and where

consequently V and ^^— are commutative in order of operation on f.
ou

Utilizing the results of Ex. 2 to eliminate V^u and eliminating Vw we find

?)u ^^ du~?)u' ^°^ \du ' {VfyJ ^ {V/y ' du

The condition to be satisfied is that the right-hand member—a function of

p and u—should reduce to a function of u alone by aid of the equation

f(p, u)=0. If F(p, u) reduces to a function of u alone by aid of the equation

/(/o, w)= 0, we must have Vi^+Vw . |^ ||
V?^

|1
V/ or simply YVJVF=0.

Thus the condition required is

Ex. 6. Show that the family of confocals Sp((fi+ 7i)~^p+ l==0 is an
equipotential system, and determine the potential.

[Here we have y/= -2(<^-|-'^)-V and ^= -(<^+w)-y= -K^/)'

;

also V2/= -22i((t>+ u)-H=2i:(a^-\-u)-\

These give

§u'^^Tu= -P«-^= -l^log V{(aH.)(6^Hh.)(c^ + .)},

Ex. 7. The condition that the family of surfaces f(p, u)= should

compose a system of characteristic surfaces in an optical medium of constant

density is r /?)f\-^^
VV/V/(V/)^(|^) }=0.

[Hamilton's characteristic functions satisfy the relation TVQ=n, where n
is the index of refraction of the medium. If the family of surfaces satisfies

the condition we must have Q a function of u, so that \/Q=QVu= - Q'f~^Vf,
where the accents denote differentiation with respect to u. Hence when n
is constant, TVf.f-^ must reduce to a function of u, or VV/V(TV/./-^)=0.]

(vi) Kinematics of a deformable system.

Art. 129. It' q is any function of p and t, its total differential

may be written in the form

dq = qdt-SdpV .q; (l.)
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and in particular when we replace dp by crdt we shall write

'Dq = qdt-S(rV .q.dt and J)q = q-Ba-V .q (ll.)

When or denotes a velocity, Dtq is the rate of change of the

quantity q regarded as associated with the moving point. On
the other hand q is the rate in change of ^ at a fixed point, and
— Sd/oV , q is the change in the value q from the extremity of p
to that of /o+ d/o at a given instant.

If dyo, dj/ and dv are elements of directed line, directed area
and volume respectively, at the extremity of /o in a medium
moving with the velocity o-, we have by Art. 124 (ii.), p. 212,

Dtiqdv)= (Dtq+ m''q) . dv,

D,(Strrd,/) = S(D,trT+x^)-d'^ = S^di/, r (iii.)

D,(Sc7d^)= S(D,t7+ 0'CT) . dyo = Sgdyo,

.

where* (Art. 124 (i.) and (ill.))

— ^ ^ \

( IV ^

because for example we have StrxD^di/ = Scrxdj^ = S^t^di/.

In terms of the spin-vector e= JVVo-, the divergence
W/"=— SVo- and the self-conjugate part 0^ of we may also

write

^ = Dftrr— VeCT -f {m"— 0o)^> § = ^tT^— ^^'^+ <t>(P ' • • •i^)

or explicitly in terms of cr we have

t^= tir- VV Vcrtrr- o-SVct, g = trr- VSo-trr - Vo-VVtjr (vi.)

To prove these results observe that

^ = trr— So-qV . CT— trroSVo-+ SctqV . a-

= CT-So-(V) . cT-f Ss7(V) . (7- o-oSVct

and that

^ = trr— So-qV . trr— VSCTo(r=^— So-oV.CT-f VStrro-Q— VSortrr,

where (V) operates in situ both on o- and tJT and where o-^ and zs^

are free from the operation of V.

In addition we may write

(D,-fm")g= g-Sc7(V).g (vii.)

because this expression is q — So-qV . q— SVo- . ^q.

We may connect this with previous results by observing that

(D<-|-m")Scja)= S(^co+ t7w)= S(CTw-|-?7ft)) (viii.)

is a consequence of (iv.) where co is any vector function of p and t^

^Iso SVCT = (D,4-m'0SVt7 (IX.)

* See H. A. Lorentz, EncyEopddie der math. Wiss., Vg, p. 75.
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We may also observe that if w = VVcr, we have by (vi.)

since t and p are independent, so that the order of operation by
|

V and of partial differentiation with respect to t is indifferent. ^

Hence VV^ = a), if ft)=-.VVtrT (x.)

From these relations we derive various forms for equations of
continuity ; and the voluminal, the areal and the linear equations ;

of continuity are respectively ^

(De+ m")g = 0, T^= 0, m-=0 (xi.)

The first asserts that qdv does not change for the element of

volume ; the second requires Strrdi/ to remain constant for all

vector areas dv, and S-nydp remains unchanged if ^ = 0. \

Instead of supposing the quantities q, rn and cr to be functions

of p and t, we may take them to be functions of t, u, v and u'

where u, v and w are three parameters which individualize the

moving point.

This is Lagrange's method, and Euler's method is that in

which everything is expressed in terms of p and t. The total

differential of q we shall now write in the form,

^^=i^*+i^'-+s^^+3>^ (-)

'

and following the moving point we have

I>eg =^ (xm.)

since u, v and iv remain unchanged. In particular

The vectors a and ^ now become

^=t-^^4^o. t = W-^«|-o. (X.V.)

as appears on reference to (iv.). The appropriate form for V in

these relations is that given in Art. 128 (vi.) or (xiv.). The
element of volume is now —Sp^p2P2dudvdw, and the voluminal
equation of continuity is simply (compare (m.))

qSp^p^ps^ const (xv.)

Ex. 1. If c is the density of a continuous distribution of matter moving
with the velocity cr, Euler's equation of continuity is

c= Sy(co-) or D,c= cSVo-;
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and Lagrange's equation is

- cSpip2P3= 0= const.

(a) Hence Drlogc= -^ log 8/31/3.2/03= SV:^= SV(r.

Ex. 2. Show that

(>=6--o-SV(r, rr=(r-Vo-2-Vo-VVo-= D«o--JV.o-2.

Ex. 3. Show that ^-P^'^^t
Ex. 4. In general

VgC7'+ VCTg' = t^", V^CT'+ Vt;TCT'= m"trT"+g" where Z5"= YTST:5'.

[These relations follow most easily from (iv.).]

Art. 130. The integral

F=-\^r;^dp (I.)

taken from one point to another along a curve depends generally

on the nature of the curve ; but if VVcr = 0, so that ct = VP, the

value of the integral is simply the difference of the values of P
at the extremities of the curve. This integral may be called the

flow of the vector t7 along the curve.

The time rate of change of F as the curve moves with the

medium with velocity a- is

D,F= - [s^d/o, (II.)

and if this integral is independent of the nature of the curve,

§= VQ, cT-y(TVVt7= V(Scrtrr+Q), D,tJ= V(S(7trro+Q) (m.)

are different forms of the condition to be satisfied, Q being a
scalar function of p and t. Other forms of the condition are

VVg = 0, VVc7-VVV(rVVcT= 0, VVD,CT= VV'VS(7C7'; (iv.)

or again (Art. 129 (x.))

<o = 0, where a) = VVt;7 (v.)

As regards the third of (iv.), note that VV2S<TnTQ= 0.

In general we have (Art. 129 (vi.))

D,P= - [S (tiT- Vo-VVcT)dyo- [S(7ct], (VI.)

and

DP= - fs^dpd^- [sVVCTdi/-[So-aT]d^, where di/- Vo-dyod^ (vii.)

and w^ere [Scrt^] denotes the difference of the values of So-trr at

the extremities of the curve. The expression for T)F shows the

meaning of the various terms, di/ being an element of the area

swept out by an element of the curve in the time d^.
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In the case of a closed curve, the circulation of the vector zj

in the curve and its rate of change are expressed by

C=-{Szjdp, BtG==-{s^dp; (viii.)

or when ct does not become infinite at any point of a- surface

drawn over the circuit, we may transform the circulation into a
surface integral so that

a=-fSa>di/, D,a= - fScodi/, co= YVto (IX.)

The circulation is therefore the flux of the vector a)( = VVtrr)

through the circuit, and the rate of change of the circulation is

the flux of the derived vector w ( = VV^) or the circulation of ^.
For any small plane circuit, the circulation — SW^dj/ is the

projection of VVct on the normal to the circuit into the area of

the circuit. Thus VVct determines the aspect of the unit circuit

in which the circulation is a maximum, and it likewise gives the
magnitude of the circulation TVVcr in that principal circuit.

In like manner w determines the aspect of the circuit in which
the rate of change of circulation is a maximum as well as the
value of that maximum.
The vector D^VVtJ determines the rate of change of the

circulation from one principal circuit to another following the
motion of the medium. A principal circuit does not generally
remain a principal circuit. We note that by (iv.) and by
Art. 129 (IV.)

to = YVBtTH- VVTSo-ct'= D,VVcT- VVVo-VW; (x.)

and in general we have

(D,V-VDO.g = V'S(rT.g, (XI.)

because D,V . g = V^--So-V . Vg, VD,g = Vg--(V)So-V . g.

If a tubular surface, drawn through any circuit, is composed
of curves satisfying the differential equation

VVCTdyo = 0; (XII.)

or, what is equivalent, if

SVtrrdi/= (XIII.)

over the tubular surface, the circulation in any evanescible*
circuit traced on this surface is zero. In particular if ABC
and A'B'C' are two circuits embracing the tube, the circuit

ABCAA'B'C'A'A is evanescible and also the circuit AA'A. From
this it follows that the circulation in ABCA is equal to that in

A'B'C'A', being opposite to that in A'C'B'A'. Hence the circulation

* An evanescible circuit may be reduced to zero by continuous variation.
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is the same in all circuits drawn on the tube so as to embrace it

once.

The flux of the vector zs through a given surface bounded by
a given curve is /> fc i

'

/ x6^=- StJTdi/, (xiv.)

and the condition that this should depend only on the bounding
curve is that the divergence of zs should vanish, or

SVtrr= 0, (XV.)

as we see by transforming the integral over a closed surface into

a volume integral.

The rate of change of the flux is

T>,G= - [s^d,/, (xvi.)

and the condition that this rate of change should depend only on
the bounding curve is

SVt5 = or SVcj--S(V)(r. SVc7= 0, or (D,+ m")SVt7 = 0. (xvii.)

In any case in which SVtrr= 0, if a tube is constructed of the

lines Vd/)CT= through a circuit, the fluxes across all sections of

the tube are the same, and the value of the flux is the strength

of the tube. For a small tube we have, if Tdi/ is the area of a

cross section and if dn is the strength,

Tdj/Ttrr= d7i, where SV^ = (xvm.)

Ex. 1. If VVDiO-= 0, the circulation of the vectors cr in any circuit

moving with the medium remains unchanged.
[See (ill.) and (iv.). We have D,a-= V(io-2+ ^).]

Ex. 2. Show that in Lagrange's method

(D,V-VD.)y=|^.9.

Art. 131. In Art. 126 we showed that any vector V5 can be
expressed in the form (see (iv.), p. 220)

trr= Vp, (SV^ = ()), (I.)

where |) is a certain quaternion. We shall examine how this

quaternion is related to the flow and the flux of the vector trr.

In terms of jp,

J^=_fScTdyo=-[sVVVp.dp+ [Sp], (II.)

because — S . VSp . dp = dSp. Hence for a closed circuit, the

circuktion depends merely on Vp. If the circulation in every
circuit vanishes, the quaternion p reduces to a scalar, as we have
already observed. The circulation in general is expressible as

C=-js.VVYp.dp=-[s.V2Vp.di. (III.)
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We have also

I)tF= - fs.(VVp- VSo-VVp-o-V-^Vp)dp+ [D,Sp]; .....(iv.)

and m and tj are

^^Vp-V^a-Vp-YaV^Np, ^= Vp-YVY(TVp-crV^Sp. (v.)

The flux is

G= - {s^du= - isdpV.Sp- {sYpdp, (vi.)

since fSdt'VVp = [sdyoY^.

The flux through any closed surface depends merely on Sp.

Comparing (ii.) and (vi.) we see that Yp and Sp play a comple-
mentary role in these two relations. Various forms may be
found for DtG on which we cannot delay.

Replacing p by ct in the second form of the identity

{Art. 126 (iv.)), we obtain the expression

''=i4:7w^pr^U.Tip-p) (^"•)

applicable throughout a given region, and this exhibits the nature
of the quaternion p of the present article. If there is no
circulation at the boundary, so that we may put nj = VQ (where

Q is a scalar function) in the surface integral, we have on
replacing p by VQ in the identity already referred to

also putting p^Q in the first form of the same identity and
introducing a new scalar function E,

f V'Q'dv _ f Sd.-VQ' r du'Q'
^-'^ h^T{p'-p)- }4:^T(p-p)-^^]wr(p'^y ('^•>

Substituting for the surface integral from (vill.) in (vii.) and
attending to the definition of R in (ix.), we find

Moreover R is given by (ix.) as a scalar surface integral depend-
ing on the values of Sdi/^ and of Q over the boundary, and
V2i2.= throughout the region. In this notation (ii.) and (vi.)

become

F= -.{sVr,dp+ [P+ Rl G= - {sdi^V(P+R)--{s^dp. (XI.)

If r] = 0, the distribution of the vectors CT is irrotational ; if P
is zero there is no divergence and the distribution is solenoidal

;



ART. 132.] IRROTATIONAL AND SOLENOIDAL VECTORS. 235

if P and rj both vanish, the distribution is irrotational and
solenoid al.

If, as in Art. 130 (xviii.), dri is the strength of a tube of vectors

VVtn of cross-section Tdo), and if dp is along the tube, we have

VVcT . dv= VVtrr . TdwTdp = dyodn because dp || do) 11 NVrs.

If the tubes form closed rings and if di/ is the directed element of

a surface bounded by a ring, we find (compare (x.))

or again

where Q is the solid angle subtended at the extremity of p by
the closed ring of strength d^i,

because Sd,/'VT(p'-p)-i = Sd/U(yo'-yo) . T(/-p)-2= -dQ.

(See Chap. VII., Ex. 22, p. 86.)

Hence at any point outside the vortex rings, i.e. at a point at

which p does not equal p, we have

V^ = ^-V \iUn, CT= V(P +^ fodTi+ i^) (XIII.)

This well-known transformation is due to the fact that under
the supposed conditions a certain quaternion is reduced to zero

by the operation of V.

Art. 132. By means of the transformations

pS(V)CT = pSVCT-trr, yoV(V)!:T = pVVc7-2cT,

pSp(V)CT= pSpVt7 4-VpnT, pVpV(V)cT = pVpVVt^-3Vptrr, ...(i.)

which may be verified without difficulty, we obtain the trans-

formations,

= i
[
pVVrrr . di'- ^LVdi/trr

;

j
Vpticr . dt'= — LSpVto . dv-h LSpdi^t^r

= ^[pVpVVc7-iLVpVd,.S7 (11.)

Another transformation, likewise depending on the invariantal

properties of V, is

Swtu . dv=
I

Spa)di/trr— (SpwW -f Spw V'CT)dv ; . . .(iii.)
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and by introducing p and V into any relation it is generally

possible to find a transformation analogous to these.

Ex. 1. The momentum and the moment of momentum with respect to

the origin of vectors p of a portion of a continuous medium of density c,

may be thrown into the forms

A= jco-dv= jpSV {car)dv - jcpSdvo-= \ JpW{ca) . dv - 1 Jc/oVdvcr,

)u= JcV/xrdv= -
f
pSpV(co-)dy+ jcpS/adi/o-= ^

JpV/)VV(co-)dv - \\cpYpYAv(T ;

and the kinetic energy of the portion may be represented by

T= j|cTo-2dv=-\ jcS/ocrdi/a-+ jc(S/)o-SVo-+ S/oo-VVo-)di;+ \ jSpo-Vccrdv.

(a) For an incompressible substance of uniform density, if 2€=Wo-,

A= c|o-dv= - cJ/)Sdvcr=cJ/0€d2; - ^cJ/aVdvo",

/x

=

c^YfxrdiV= - 2cJ/)S/)€dv + cj/)S/)dvcr= § c
J
pYped^; - ^ cJ/oV/aYdj/o-,

T= I cJTo-Mv= - ^ cJS/Do-dvo- + 2cjS/ocredv.

Ex. 2. In the notation of Art. 131, the kinetic energy may be expressed
by

T= -^{c(S7;o-dv + (P+^)So-dv)+i|c(P+i2)dv-i|S7?V(ca-).dv

;

and for an incompressible substance of uniform density,

T= - ^cJ(S77o-di/+ i?So-dv) - cjSTyedv,

and the volume integral is

(vii) Equations of motion of a deforinable system.

Art. 133. For any system of particles the equations (compare
Arts. 119 and 120, p. 194)

M.J)tCT = X, DivTf.dm = ^ (I.)

are independent of the mutual reactions of the particles com-
posing the system, M being the total mass, a- the velocity of the

centre of the mass, r the vector from the centre of mass to the

particle dm, X the resultant force and jm the resultant couple

referred to the centre of mass.

Suppose the system of particles to compose a definite portion

of a distribution of matter, and let each particle dm be acted

on by a force ^dm and a couple ^ydm due to external causes.

In addition the portion of matter is subject to the interaction

between it and the rest of the matter. The forces of the

interaction on the portion may be supposed to be the resultant

of a number of forces ^dv acting at each point of the boundary
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of the portion, and $di/ is a linear function of the tensor of dp—
the vector element of the surface. Moreover if c is the density,

we have dm = cdv, where dv is an element of the volume. The
equation (i.) therefore may be replaced by

D,o-. [cdv=fcfd?;H-f$di/; (ii.)

and D, . [Vtt . cdi;= fc(;?+ VT^)dt;+ [Vr^dv; (m.)

and the volume integrals are taken throughout the selected

portion while the surface integrals are taken over its boundary.

When we take the portion of matter to be small, the volume
integrals in (li.) are ultimately of the third order of small

quantities and the surface integral is of the second order.

Provided therefore D^o- is not excessively large for very small

portions and provided ^du is a continuous function of the

vector- element of surface dt/, the surface integral must vanish

independently of the volume integrals when the dimensions of

the portion are greatly reduced ; and if the portion is taken to be

a tetrahedron whose vector faces are proportional to a, /3, y and
S, we see that the function #di/ at any point must satisfy the

condition

$(a+^+ y)= *a+$^+$7 (iv.)

for all vectors a, /3 and y, because we have for the evanescent

tetrahedron $a+$^+$y+*^ = 0, where a+ /3+ y+ ^ = 0. Thus
$ is a linear and vector function. We may therefore apply the

integration theorem of Art. 125, Ex. 2, and replace |$di/ in (ii.)

by the volume integral I <I>V . dv, in which V operates on $
in situ. Thus we have

Dt(T.{cdv={(c^-\-^V).dv', (V.)

and when we reduce the portion, we find in the limit

D,o- = ^+c-i.#V, (VI.)

where Dtor is the acceleration of the centre of mass of a small

portion of the matter.

Applying the same principles of continuity and of dimensions

to (ill.), and taking the portion of matter to be a small parallele-

piped whose edges are parallel to a, ^ and y, we find

''
-^;ySa/3y+Va#V^y+ V/3c&Vya+ Vy$a/3= 0;

or simply (Art. 67, Ex. 7, p. 97)

C>7-f-2e = 0, (VII.)
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where e is the spin-vector of $, as we see more easily by puttino^

i, j and k for a, /8 and y. Provided there is no voluminal

distribution of couple, the function $ is self-conjugate.

The equation of continuity is

c = SV(ccr) or — cSp^p^p^ = C, (viii.)

according as we use Euler's or Lagrange's method (Art. 129), and
by Art. 128 (vi.) or (xiv.) we may replace (vi.) by

W-^+'^-il ^""^^f^+i *^>3Px+4 •
*V,,,,). ...(IX.)

Ex. 1. Find the equation of motion for a perfect fluid.

[The force ^dv on the boundary of a portion of the fluid is —pdv, where p
is the pressure, remembering that dv is outwardly directed. Hence the

equation is D«o-= ^ — c~^Vp.]

Ex. 2. Integrating along a stream line, show that

^T(r2+ jS(^+ c-i*V)d/3

is constant for an element of the matter, and find the integral in the case of

a fluid acted on by conservative forces.

Ex. 3. When the forces acting on a perfect fluid are conservative, the
circulation in any circuit moving with the fluid remains unchanged provided
the density is a function of the pressure.

[We have Dt(T= - V(P+ jc-^;?). See Art. 130, Ex. 1. An independent

proof is easily obtained by Lagrange's method, which gives

and if this vanishes for all closed circuits VVD«o-= 0.]

Ex. 4. If F= - jSo-dp, show that

Art. 134. To determine the nature of the stress-function $
for a viscous fluid, we assume as usual that the stress consists of

a hydrostatic pressure and of a part linear in the rate of dis-

tortion of the fluid, and that the stress-function is coaxial with
the strain-function. In the notation of Art. 124, the strain-

function is i(<l>+ (p'), and the general linear function coaxial

with this function and linear in its coefficients is of the form

n((f)+ (l)')+nm", where n and n' are constants and where
m ( — — SV(r) is the first invariant of </> or

(f>'
or J (0 H- <f/).

Consequently the stress-function is of the form

$a= —pa-{-n((^-{-(l)')a-\-n'7nf'a, (l.)

a being an arbitrary vector and p being a hydrostatic pressure.

The hydrostatic pressure is defined more particularly (with

changed sign) to be the mean of the principal stresses, or
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Hence the coefficients n and n' are connected b}' the relation

2n-^Sn=0: (ii.)

and finally in terms of V (Art. 124, p. 211),

$a= -pa-n{SaV .(T+ V .Sa(r)-\-%naSVar (ill.)

If n does not vary from point to point of the fluid, the equation

of motion becomes

D,a- = f-c-i.V^-c-i^(VV+iVSV(r); (iv.>

otherwise if n varies, it must undergo operation by the V which
replaces a.

In like manner for an isotropic elastic solid, if is the

displacement,

^a= -n(SaV .e+ VSae)-naS\-e, (v.>

assuming that the stress function is coaxial with the strain-

function and linear in its constituents. The equation of motion
becomes

Dt^e= ^-c-''nV^e-c-\n-\-n')V .SVe (vi.)

Art. 135. The rate of change of kinetic energy of any finite

portion of the matter is

Di^cTo-^ . dv= DJiTo-^ . dm

• =-[Sa-D,a-.dm=-fScro(c^+^V)dr, (l>

and in the last integral V operates on $ but not on a- as indicated

by the suffix. Because S(r$V = So-^^V -j- So^^V, where V operates

on the unsuffixed symbols, we may integrate by parts, and we find

Dt hcTa-^ .dv=- {cSa-i • <i^+ jSo-^o^ • dt^- [S(7*di/, . . .(ll.)

where du is an outwardly directed element of the boundary of

the portion of matter.

For comparison we give the expression for the rate of change
of kinetic energy in any region fixed in space. It is

hcTa^ . dv= [icTo-M'y - fcSo-d- . df

, =1 iT<ro^SV(c(r)-cScr^VSa-o(r}dv-{So-o{ci+^V)dv,

on making substitutions from the equations of continuity and of

motion.
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Now — So-oVSo-oO- = + So-qV . JTo-^ and the first integral changes

^t once into a surface integral so that

d

dt.
JicTo-^d^

= [icTa-2 . So-di/- {cSa-i • ^^+ {Scr^^V . dv- {Sa^dv, . . .(ill.)

transformation of the second part of the integral being as before.

The difference between (ii.) and (ill.) is due to the influx of

matter through the boundary.
The first integral in (ii.) is due to the activity of the applied

forces ; the third is due to that of the surface stresses ; the second,

with sign changed, gives the rate at which energy is stored in

the medium or dissipated.

Art. 136. In the case of a viscous fluid, the rate of storage

^nd waste of energy per unit volume is (Art. 134 (m.))

- ScT^V =pSVa-\-n(SVVS<r(T'+SV(r'SVa-)- in{SVo-f. . . .(l.)

By the aid of the equation of continuity (Art. 133 (viii.)) the

term in p may be replaced by

pDtlogc^BApc-^dc^ —DApb-'^dh, (ii.)

where h is the bulkiness, the reciprocal of the density ; and for a
given mass the rate of change of the intrinsic energy is

|^SVo-.dv= — I^Di6dm= — Djd?7ilpd6 (iii.)

The part quadratic in a- is called by Lord Rayleigh the

dissipation function, and it measures the rate at which energy
per unit volume is wasted by the viscosity. This depends on the

distortion, and it is expressible in terms of the elongations

e^, ^2 and e^—the latent roots of the function 0o — K^+ ^O of

Art. 124.

The invariant m of is (Art. 124 (vii.), p. 213)

aIso we have

4e2 = VVcT^ = SVVo-VVV = SVo-^SVV- SVV'So-o-'

;

^nd from these two expressions we get

SVV'So-o-'+ SVo-'SVV= - 4e-- 4m'+ 2m"2

since m" = - SVo-= - SW. Thus

2F=n{SVVSa-a+SVa'SVa—%SVcT^)=^inim"^Sm'^S€^), (iv.)
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But (Art. 68, p. 98) the invariants of ^^ are

m"= 61+ ^2 4-^3 and m"+ e^ = ^2^3+ 6361 4- ^1^2'

and therefore

F=in{(e,-e,Y+ (e,-e,y+ (e,-e,r} (v.)

Hence it follows that if the dissipation function vanishes the

distortion of any element must be a uniform dilatation or con-

traction, for the conditions are

^1 = ^2 = ^3 (^i-)

Ex. For a dynamical system consisting of a solid and a fluid, the
momentum and the moment of momentum of the system referred to the
centre of mass of the solid are given by

X= Mv+\(rdm, /x= ^a) + jVpcrdwi,

CO being the angular velocity of the solid, v the velocity of its centre of mass,

cf)(x) the moment of momentum of the solid, p a vector from the centre of

mass of the solid to an element dm of the fluid which is moving with
velocity cr.

(a) In general (/x. A) is the resultant wrench of the system of impulses
which would generate the motion, and if the motion of the fluid is due to

that of the solid, A and /a are functions of v and w ; but if the motion 'can be
generated by applying the wrench to the solid, it follows from Newton's law
of the composition of velocities that X and /x are linear functions of v and w,

or that (p. 208, Ex. 12)

A= <f)iV+ </)2W, fJL= <f)2V+ ^sW,

where
<^i, (f>2, (f>2 ^^^ ^3 ^^^ ^^^^ linear vector functions.

(b) The work done in altering v and to to v+ dv and (o + dco is

dTf=-SAdv-S/xd(o;

and if the dynamical system is conservative, so that d TT is the differential of

a function W of v and w, the functions
(f)^

and c^g must be self-conjugate and
<f>2

must be the conjugate of cf>2-

(c) In the case of a perfect fluid, the velocity generated in this way must
be irrotatiorial, and assuming that o-, as well as A and fi, is a linear function
of V and w, we must have

(r= V(Sv6'+ S(of),

where 9 and ^ are vector functions of the vector p.

(d) In the case of a solid moving in an infinite liquid of uniform density,

or of a solid containing a cavity filled with liquid, the functions 6 and'^
must satisfy

V26'= 0, VY=0
throughout the liquid. And at the surface of the solid in contact with
the liquid

'
'

S(v+ V(op)dv=SdvV.(Sv(9+S(of),

so that 6 and f must satisfy the surface conditions

dv=SdvV.(9, Vpdj/=SdvV.^.

J.Q. Q



242 THE OPERATOR V. [chap. xvi.

(e) In this case we may replace the expressions for A and /x by

X=Mv+ cldv{Svd+ ^(oO, /x= <^(o + cjV/3dv(Sv6'+ Sa>f) ;

and by the aid of the conditions which 6 and f satisfy, it may be shown that

jdi/Sa^=JSW . eSaO' . dv, \ypdvSa^= JSVV . ^aC . dv,

jVpdvSa6'= JSVV . ^ad' . dv, jdvSaf=JSVV . (9Saf' . dv,^

so that the conditions (b) are satisfied. Also the functions <^j, <^2 ^^^ <^3

depend on the nature of the solid and on the density of the liquid, and they
are invariably related to the solid.

(/) If the solid is acted on by an applied wrench (17, ^) referred to its

centre of mass, the equations of motion, analogous to Euler's equation for a
rigid body, are

the second equation being obtained by expressing that the rate of change of

the moment of momentum (fi+ Y-yX) with respect to a fixed point is equal
to the moment of the applied forces (17 + Vy^) with respect to that point.

(g) When there are no applied forces obtain and interpret the integrals

T((/)jV+ ^2^)= const., S {(f)iv + (/>2w)(</)2'i; + 4*3^)= const.,

Sv<f)iV+ 2Svcf)^(i> + So)(f)2(i) = const.

(h) When the linear momentum is constantly zero,

and the angular velocity is that of a certain solid moving round a fixed point
under the action of the couple tj.

(i) For a steady motion of translation under no forces Yv(f)^v= ; and in
general for steady motion when w does not vanish

v=- (^i"^ (<^2+ ^) <^j ^to [<^3

-

{cf)2 + ^) <^r^ (</)2 + ^)] a>= 0,

where ^ is a scalar. From this it follows that the axis of the screws of
steady motion are parallel to edges of a sextic cone, and in general to each
edge of the cone corresponds a single screw.

Art. 137. In terms of the displacement 6, the equation for

an elastic solid is (compare Art. 134 (vi.))

D,20 = ^+c-i$V, (I.)

the velocity or being and $ being a self-conjugate function
because there is no voluminal distribution of couple. The
displacement is a function of the time and the position vector,

and when the strain is small we may neglect the term — S^V ,

in Di^O. We replace, in fact, Dt^O by the second derived of

regarded as a function of t alone, that is by 0. Observe that
now V is commutative in order of operation with the result'

of differentiating with respect to the time.
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By Art. 135, the rate at which the forces work in storing and
dissipating energy is the integral

W -{se^^V.dv (II.)

taken throughout the body. By Hooke's law, stress is a linear

function of strain. If the strain is multiplied by n, the function

$ is likewise multiplied by n. Suppose the strain to be
gradually increased from zero so that at any stage the strain is

n times the final amount where n is positive and less than unity.

In this case (ii.) becomes W= —nn\SO^QV . dv; and integrating

between the limits and 1, the total work done in producing
the strain in this particular way is seen to be

w. ^{se^^v.dv (III.)

If the work done is a function of the strain and not of the

manner in which it has been produced, the function W is the

energyfunction—a quadratic function of the strain, and the work
done in altering the strain in any arbitrary manner is the

difference of the values of the energy function corresponding to

the final and the initial state.

When the energy function exists we see on comparison of (ii.)

and (ill.) that in general for any two sets of strain answering to

the displacements 6^ and 0^, we have

|So-i<i»2Vi.dv=|S(r2^iV2.d'y (iv.)

In fact the theory is quite analogous to that of the linear function

in the quadratic expression Spcpp. If dSp
(p
p = 2Sdpepp the

function (p must be self-conjugate, and ^Pi<pp2 — ^P2^Pi ^^^ ^^^

vectors. Conversely, if (iv.) holds good for all pairs of strains,

the energy function exists.

The quaternion statement of Hooke's law is the function $ is

linear in the constituents of the self-conjugate function

cp^a = i{<p+ <p')a=-^(SaV .e-VSaO).

In other words, # is a linear function of V and of 6, which is

unchanged when and V are interchanged, V operating in situ

on 6. Thus if a is an arbitrary vector free from the operation

of V, ^ooke's law is contained in the equation

^a^e(a, V, e) = e(a, 0, V), (V.)

where 9 is a linear function of a, of V and of 0.
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In case the energy function exists

^sd^^^v,:=:se,e(v^, v„ e^)=se,e(v„ o^, v,) (vi.)

But we have already shown that $ is self-conjugate, so we may
equate the expressions (vi.) to the new expressions

=^sv,^,e,=sv,e(e,, v„ e,)=sv,Q(o„ e,, vj (vn.)

We may sum up the whole matter in the following statement

:

writing for four arbitrary vectors

(a, fi, y, (5)= -Sae(A y, ^), ...(vm.)

the fact that $ is self- conjugate allows us to interchange the

positions of a and /3 ; Hooke's law permits the interchange of y
and S\ the existence of the energy equation renders the pair

a, /8 interchangeable with the pair y, 6.

For any system of mutually rectangular unit vectors, i, j, k,

we obtain from (v.) six self-conjugate vector functions (of a),

e(a, i, i), e(a,j,j), e(a, k, k), e{a,j, k), Q(a, k, i), e(a, ij), (IX.)

with permission to interchange the positions of the second and
third vectors. The thirty-six constituents of these functions are

the thirty-six elastic constants in case the energy function does

not exist. When the energy function does exist, the number of

constants is at once reduced to twenty-one ; three of the type
(i, i, i, i); six (i, i, i, j); three (i, ij/j)', three (i,j, iJ); three

{j, k, i, i) and three (j, i, k, i), using the notation indicated in

(VIIL).

To exhibit clearly the meaning of these constants we shall

employ a special notation for the strains. Let = iu-\-jv-\-kw

and p= ix -\-jy -\- kz ; let

s.=^,etc.; s«=.,,, =-+- (X.)

Then the stress across a directed area a arising from the strain Su

is 9 (a, i, i)sii, and that arising from the strain .s\j is Q{a, i, j)Sij.

The symbol (ijki) represents the component of the stress across

unit area j parallel to i due to unit strain of the type s^i ; and
when the energy function exists this is equal to the component
parallel to k of the stress across unit area i due to unit strain of

the type Sy.

Ex. 1. Show that the energy function is of the form
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Ex. 2. Determine the reduction in the number of the elastic constants
when the substance posseses a plane of symmetry.

{a) If the substance has two mutually rectangular planes of symmetry,
the plane at right angles to both is a plane of symmetry.

[Reflection with respect to a plane of symmetry leaves the elastic

properties unchanged. If k is normal to the plane, the constants whose
symbols involve k an odd number of times must vanish. Thirteen of the
twenty-one constants remain. When the substance has two planes of
symmetry, at right angles to^' and to ^, only symbols of the types (mV), {iijj)

and {ijij) remain, and hence the plane normal to i is also a plane of

symmetry.]

Ex. 3. If the elastic constants referred to 2,y, k remain unchanged when
the axes of reference, i and^, are turned through two right angles round k,

the plane perpendicular to X is a plane of symmetry.

[In this case change of i and j into — i and —j must leave the symbols
unchanged.]

Ex. 4. Determine the conditions that the elastic constants may remain
unchanged when i and^ are rotated through a finite angle v round k.

[If a and (^ are the vectors obtained by turning i and j through an
arbitrary angle u round k, the functions of ?/, (kkka), {kakj3\ etc., must be
periodic functions of u for the period v or else reduce to constants. These
functions can be expressed as sums of sines and cosines of u^ 2u, Zu and Av,

together with constant terms. Hence the only admissible values of v are
TT, Itt or ^TT. In every case the symbols involving k three times must
vanish. We have already considered rotation through two right angles. For
rotation through ^tt, the symbols linear in k must also vanish, and changing
i and^' into \-j and -^ respectively must leave all symbols unaltered. Thus
{kku)= {kkjj\ (kkij)= 0, etc., and (ii'>j) + (jjji)= 0, {iiii)= {jjjj)- For rotation

through Itt the functions of u independent of k or involving k twice must
reduce to constants. We find in addition to the conditions satisfied for

rotation through one right angle that {iiij)=(^jjji)=zQ^ (uu)= (ujj)-\-2{ijij).

Expressing that (kaaa), (kaa^) are functions of cos3^t and sinBw, we get
-{kiii) = {kjij)= {kijj), -\kjjj)= {kiji)= {kjii). For rotation through an
arbitrary angle the symbols linear in k must vanish and the conditions for

v='^ir must hold.]

Ex. 5. When the energy function exists prove the existence of a
self-conjugate function (^ for which the relation

0(a, /3, 7)-e(A a, y)=V. c^Va^. y
is identically true.

{a) The axes of ^, when determinate, form a natural system of lines of

reference, and where a plane of symmetry exists, it is normal to an axis.

[The function on the left is obviously a linear function of Va^. Operating
by S8 we have

(8a/?y)-(8^ay) = (/5y5a)-(^8ya)= -SVy8</)Va/3= -SVa/3<^^^yS,

and as this is a symmetrical function of Va^ and of VyS the self-conjugate
character of ^ is established.

For an arbitrary set of mutually rectangular axes, we have
• \ e (^^ /, ^') - ( /, ^^ k')= Y^k' . k\ etc.,

whence it follows that if 2, j and k are the axes of <^, the vectors are
completely permutable in Q{i,j, k), so that {iijk)= {ijik\ etc.

We easily find - S^''^^'

=

{i'i'j'k') - {i!j'i'k!\ — Si(f)i' = (fk'fk') - (ffk'^\ so

that if k' is normal to a plane of symmetry it is an axis of <^.
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If e^, ^2, 63 are the latent roots of ^ we have in terms of the axes

ej= (jkjk) - {jjkk\ <?2= {kiki) - {kkii\ e^= {ijij) - {iijj).

Given the constants referred to axes ^', /, k' we can on transformation to the

axes of <j) determine whether there are planes of symmetry or not.

In general putting p—zk-\-ra, where a= icosu+jsinu, we have the

expansion

ipppp)= z^ {kkkk)+ 42V{kkka)+2^^
{
{kkaa)+ 2 (^a^a) }-\-^zr^(kaaa)+ r^(aaaa),

and when i, j and k are axes of
(f>
we have also

(kaaa)= (kin) cos%+ S(kuj) cos% sin w + 3 (kijj) cos u sin^w 4- {kjjj) sin^ u

because the letters in a symbol involving ^,y and k are completely permutable
for this special set of axes. Hence it follows that a plane z= which is a

plane of symmetry of the quartic (pppp) and of the quadric Sp^p is a plane

of elastic symmetry. The coefficients of the powers of cosu and sin i^ in

(kkka) and in (kaaa) must then vanish, and by the special laws of interchange

every coefficient of odd order in k vanishes.

Suppose now that the plane &jp = or z^ = is a plane of symmetry. The
coefficients of the powers of z must be functions of cos u alone. Thus

(pppp) =z^a-\- Azhh cos u+ Qz'^r'^ (c cos 2u+ c')+ 4zr^ (d cos 3w + d' cos u)

+ r^(e cos 4,u+ e' cos 2u+ e")

suppose. If the plane u= v is also a plane of symmetry, this function must
be independent of the sign when we put u—v±w, where to is arbitrary.

Hence b sin v= c sin 2v=d sin 3v= d' sin v = e sin 4y = e' sin 2v= 0,

and unless the quartic is a surface of revolution, the only admissible values

of V are ^tt, ^tt and Jtt. Hence planes of elastic symmetry must intersect at

angles of 90°, 60° or 45° if every plane through their intersection is not a
plane of symmetry. Of course in the second and third cases, the quadric

Sp<f>p is of revolution. There is no difficulty in writing down the elastic

constants for each case.

Suppose two roots of
(f>

to be equal so that there are indeterminate
axes in the plane of i and j, and that it is required to find a natural system
of lines of reference. We may equate to zero the derived with respect

to u of the first of the coefficients (kkka), (kkaa)+ 2(kaka), (kaaa), (aaaa)
which does not vanish. Determining u from such an equation we take
i cos u+j sin u and 7 cos w - 2 sin ^^ along with k as the natural axes of refer-

ence. The case in which cf) reduces to a constant will be considered in the

next example.]

Ex. 6. When the energy function exists,

iV2. e(p, p, p)=m(p, z, ^) + 22e(^, i, p)= <t>,p,

is a self-conjugate vector function invariantally related to the elastic

structure.

[The function is invariantal because V^ is an invariant operator inde-

pendent of any particular choice of i, j and k. If a plane of symmetry exists,

it is a principal plane of this function, because if k is normal to a plane of

symmetry, Sicf>2k and Sjcfi^k both vanish, being of odd order in k. Therefore
k is an axis of ^2^ ^^^ 4*2 ^^^ 4* of the last example have a common axis.

In terms of the axes ^, ; and k of the last example, it is easy to see that

- S i4>2i= 32 (liaa) -|- 2 (eg+ eg), - Sicfij= 32 (ijaa),

where a stands for i, j and k in the summation.
The axes of this function may be used as natural axes of reference when

the function <^ of the last example reduces to a constant e. In this case for

arbitrary axes, i, j and k are completely permutable in any symbol in which
they all occur, and (jkjk)=e+ (jjkk), etc.]
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Art. 138. In the notation of the last Article, the equation of

vibrations of an elastic solid, not acted on by voluminal forces, is

c9=e(v, v,0), (I.)

where, as we have said, is the second partial derived, with
respect to the time, of 6, which is a function of t and p.

Consider the propagation of a plane wave. If the vector v

represents in magnitude and direction the wave-velocity, the

equation of a wave-front is

u= t-S^, (II.)

u

for this represents a plane moving at right angles to itself with
velocity v. Over a wave-front, the displacement from the mean
position is, by definition, the same at every point at any given
time. In other words is a function of u and of t. Hence

V OIL V OU

and generally if /V is a homogeneous function of V of order n,

/v»=/©S • <•)

In particular (i.) becomes for plane wave motion

If the wave is of permanent type, involves t only as involved
in u, and if in addition the vibration is harmonic and of

frequency p. e=^,= -p^e ^v.)

In this case (iv.) becomes

e(Uy, Ui;, e)=^ceTv' (vi.)

This shows that for a plane wave propagated in the direction

Uv, the vibration is parallel to an axis of the linear vector

function* G(Ui;, Uu, a), and that the velocity is the square root

of the quotient of the corresponding latent root by the density.

The solid admits of three plane-polarised waves propagated in

the same direction with different velocities. The wave-velocity

surface is determined by the equation

s{K? \' «)—}{e& \' ^)-W{®G' \' r)-''r}=0- (-'•)

which is equivalent to the latent cubic of the function
'*

e(Ui;, Ui/, a).

*The function ©(Uu, Uu, a) is not one of the functions 9 (a, i, i) of the last

Article. The second and third vectors may be interchanged in these expressions,

not the first and second.
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When the energy function exists, the linear function

e(Uv,Vv,a)

is self-conjugate because we have by the law of interchanges

(Art. 137 (VIII.)), S^e(Uu, Vv, a)= Sae(Uy, Vv, /3). In this case

the vibrations 0^, 0^, 6^ for any direction of wave propagation

are mutually rectangular. Moreover, since the function W is

essentially positive, the latent roots of the function O are positive

as well as real, and there are therefore three real wave-velocities

UfTuj, UfTug and JJvTv^ in any direction.

When a linear function has indeterminate axes, the \[r function

oi (p— g vanishes where g is the repeated root (Art. 66). The
condition for indeterminate directions of vibration is therefore

where a and (3 arbitrary vectors.

This equation admits of a finite number of solutions (u), which
correspond to Hamilton's internal conical refraction. These
vectors terminate at double points on the w^ave-velocity surface.

The index-surface (MacCullagh) or the surface of wave-
sloiuness (Hamilton) is the inverse

S{e(M,M,a)-Ca}{e(M,M,/5)-c^}{e(M,M,y)-cy} = 0...(iX.)

of the wave-velocity surface (vii.), the vector jm being equal
to -v-\

The wave-surface, or the surface of ray-velocity, is the envelope
of the plane ^

S^ = l or S/xp=-l, (X.)

subject to the condition (vii.) or (ix.). That is, the wave-surface
is the reciprocal of the index surface with respect to the unit
sphere p"-\-l = 0; or it is the envelope of plane wave-fronts in
unit time after passing through the origin ; or it is the wave of
the vibration propagated from the origin in unit time; or the
vectors p which satisfy its equation represent in magnitude and
direction the ray-velocities.

When the energy function exists a simple and remarkable
expression may be found for the ray-velocity p in terms of /m

and 6. The wave-surface may be expressed by elimination
between

e(^,iJL,e)=ce, de(^,^,e)=cde, Sfjip+i=o, Spd^=o....(xi.)

The second equation is in full

e(d/x, fx, ^)+e(M, d^, e)+Q(^, p., d^)=cde;



ART. 139.] PLANE WAVES IN ELASTIC SOLID. 249

and operating on this by S0 and attending to the law of inter-

changes (Art. 137 (viii.)),

2SdfjLe{0, e, M)+sd^e(^, m, o)=csede;

and by (xi.) this reduces to

^
SdfxeiO, e, /ul)=--0.

Thus every d^ is perpendicular to 0(6, 6, /x) and also to p, so

that 9(^, 0, iJL)=^xp where a:; is a scalar. Operating by S/x we
find -x = ^^xe{e, 6, ^) = Sae(/>t, m, 0) = ce\ and therefore

t e(ue,ve, ^)=cp (xn.)

f Further, if we operate on this by Syu and on the first of (xi.)

by SO we recover the relation Sp/m+ 1 = 0; so that all the

relations connecting VO, /m and p are comprised in the two
yf^ \fi I ion

^

I
e(fji, M, 0) = cO, e(ue, ije,^)=cp (xm.)

I (viii) Electro-magnetic Theory.

Art. 139. The fundamental circuital laws of the electro-

magnetic field are"^

(I.) the circulation ( — I Srjdp) of the magnetic force (tj) in any

closed circuit is equal to the flux f ISydi/j of the electric

current (y) through the circuit divided by the velocity of light

(u) in free space

;

(11.) the circulation, with changed sign, (+ Sed/a) of the

electric force (e) in any closed circuit is equal to the flux

)y^di/j of the magnetic current (y^) through the circuiti-ik
divided by u.

These laws are symbolized by the relations

fs,dp= ySyd., (Sedp=-ySyA; (l-)

and because it is implied that the fluxes of the vectors y and y^
through the circuit are independent of any particular surface

bounded by the circuit (Art. 130 (xv.)),

SVy = 0, SVy^ = (11.)

^We-cf-nnot delay to explain the units employed in this article. Full explana-
tion will be found in the article by H. A. Lorentz on Maxwell's Electromagnetische
Theorie in Bd. Vg, pp. 63-144, of the Encyhlopddie der mathematischen Wissen-

schaften. These units are but slightly modified from Heaviside's rational units.

Much use has been made of Lorentz's article and of Heaviside's work in the
preparation of the account of the theory given in the text.
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We proceed to define more particularly wliat is meant by the

electric and magnetic current fluxes and by the electric and
magnetic forces in these laws. The electric current flux through

the circuit consists in general of three parts, the flux ( — I Sidv)

due to the conduction current (i), the rate of change ( — D^IS^di/)

of the electric displacement (S) through the circuit, and the flux

(— leSudr) due to the convection current (ev) where e is the

density of electrification"^ carried through the circuit with

velocity v. In like manner the magnetic current is due to the

rate of change ( — DJ S/3di/) of the magnetic induction (^) through

the circuit, to a conduction current (i^) postulated by Heaviside,

but probably non-existent, and to a convection current (e^v^)

where e^ is the density of magnetification carried through the

circuit with velocity v^. On the whole the integral fluxes are

-[Syd»/ = -Djs^d,.- [Stdiz-jeSiydi.,

-|Sy,d,.= -BSs/3dv-^SiAv-\e^SvAi^ (ni.)

In the rate of change of the displacement through the circuit we
must take account of the motion of the circuit which we suppose

to move with the velocity o; varying from point to point. We
have therefore by Art. 129 (iii.), p. 229.

|

\Sydu= ^S(S+ i+ ev)di;, jSy,di; = js(^+ ^,+ e,Odi/, ...(iv.)

where S= S- YVYcrS- crSVS, $ =$- VVVo-^- crSV/5 (v.)

Converting the line integrals in (i.) into surface integrals and
expressing that the relations hold for every possible small circuit

di/, we arrive at the diflerential equations of circuitation

YVr) = -(S+ i+ ev), VVe=--(/3+ i,+ e,0 (vi.)

We have not yet explained the meaning of the vectors e and rj.

The total electric and magnetic forces at a point consist of

impressed forces (e^ and rj;) together with e and rj. Thus if et and
rit are the total forces,

ei = e+ 6^, rit = ri-\-rii\ (VH.)

* This is not electrification of the medium. It is due to charges of electricity

carried by moving particles, for example.
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and Lorentz further divides the impressed electric force into a
part €ic co-operative with e in producing the conduction current

and a part ad co-operative with e in producing the displacement.

We shall write

where the suffix i calls to mind that the force is impressed,

c that it relates to conduction current, d to displacement and
h to magnetic induction (/3).

Expressing that the conduction currents are produced by the
forces enumerated, we have

f = $(e+ e,e), h = ^X^+ mcy, (IX.)

and by Ohm's law in the case of isotropic media $ is a scalar

—

the conductivity—and for anisotropic media <i> is a linear vector

function. Similarly we suppose the postulated function $^
corresponding to the postulated magnetic conduction current y^
to be a linear vector function.

In like manner, expressing that the displacement (S) and the
induction (p) are due to the forces mentioned,

S= (p(€-^€ia), ^= ci)Xrj-\-mby (X.)

The phenomena of hysteresis shows that (p and ^^ are not
always linear functions of the forces, but we shall only consider
the important case in which they are linear functions. For
isotropic media, is the (scalar) dielectric constant and cp^ is the
magnetic permeability.

Some little care is necessary in differentiating these expres-
sions when the medium is in motion. Owing to the motion <p

may change its value at a point fixed in space.

Art. 140. The activity of the impressed electric and magnetic
forces with reference to a small element of the medium of volume
dv is

A^dv=- (Seici+ Sr}ici, -f ScidS+ Sr]ib$)dv

= -(Si^-h + Si^^^-\-\-SS^-''S-]-S$<p^-^^)dv

-\-(Se(S-\-i)+ Sr]{§+ 0)dv, (I.)

transformation being made by (ix.) and (x.) of the last article.

Transforming again by (vi.) we find

- '-# -f eSev+ e^Sr]v^ -\- uSVYer}) .dv, (ll.)

because we have — SeVV>; -h S>;VVe= SWe?;.

The electric and magnetic forces evoke mechanical forces, ^
per unit volume, and the stress ^gdv across the directed element



252 THE OPERATOE V. [chap. xvi.

dv. If the element moves with velocity cr the activity of these

forces on the element is

A^dv= -(So-^+S(T$,(V))dt', (III.)

the last term, in which (V) operates on $s and on o- in situ,

being equal to the surface integral — |S(r<l>sdj/ over the element.

The total activity Adv= (A^-i-A^)dv (iv.)

is equal to the rate of transfer of energy to the element.

The term /= -Sl^-\-Si^^^-\ (v.)

is by Joule's law the rate of waste of energy per unit volume
owing to the conversion of energy into heat by the resistance.

The terms in this expression for the Joulian waste are analogous

to the dissipation function of a viscous fluid. The term
eSev+ e^Sriv^ relates to the convection currents.

The work done in increasing the electric displacement by the
amount d^ is

_Se,.^d^= -s(e-{-€ui)ds= -s^-ms, :....(V1.)

where eta is the total electric force operative in producing the

displacement. (Compare (viii.) and (x.) of the last article.)

Experiments on dielectrics show that an energy function exists,

or in other words the work done is the differential of the function

• F= - JS(50-i(5= -iS€tciS=-h^eta<l>€td, (VII.)

which represents the energy stored in unit volume of the medium
and due to the electric force. From the existence of this energy
function we infer that is self-conjugate. A similar result

holds good for the magnetic induction, and the energy due to

this cause is

W = - iS/3cp^ -^/3^- i^mlS = - \^m<t>.m (vm.)

The energy stored in unit of volume due to electric and mag-
netic forces is the sum of W and W,. -

When the medium is at rest the total activity is (ii.) 1

Adv^{J+W+W^-e^.€v-€)$>riv-U^^Neri)dv, (iX.)

because in this case S and /3 must be replaced by S and /3. We
have accounted for every term except the last. This by a pro-

cess of exclusion represents the rate of radiation of energy from
the small volume. It may be expressed as a surface integral, J

-U^V\€ri.dv= -u\sdvYeriy (X.)

and this is the total outward flux of the vector uVerj, the vector
area dv being outwardly directed as usual. This vector is the

1
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Poynfcing vector —discovered independently by Professor Poynting
and Mr. Oliver Heaviside. It represents in magnitude and

! direction the flux of radiated energy.

Granting that the same vector represents the energy flux

when the medium is in motion, and there seems to be no adequate
reason for doubt, the total activity is

Adv = (J-eSev-e,Sr]v,-uSVYer])dv-\-Dt(Wdv-\- W^dv), ...(xi.)

the last term being the rate of change of the energy stored in

the element dv and due to electric and magnetic causes.

Equating this to the sum (A^-\-A.2)dv already obtained, we have

BtiWdv-hW^dv)

= -(S^0-M+S^0,-i/3).dv-(So-^+S(r*,(V))dv. ....(XII.)

By Art. 129 (in.), p. 229, we find

D,( Wdv)= (DtW- WSVct) . d^'

= -ST>tS.(l>-^Sdv-iSS.J)t(p-KS.dv-WSVa-.dv,

where T>t<t>~^ is the result of operating by D« on the function
<f>-\

Further, by (iv.) of the same article,

S= J)tS-YVYaS= D,^- 5SVo-

+

SSV. a\

and therefore

-S^V"'<5=-SD,^.0-M-2TrSV(r-S^V'Sc7>-i^.

Hence equation (xii.) becomes

+ JS/3.D,0,-i./34-iS/3^,-i/3SV(T- S^V'So->,-')5. ...(XIII.)

The first term on the right may be written

iS^.d,0-i.<5-iSo-VS^o0"%.

where V operates on ^~^ alone since we have generally

D, = d,-So-V,

where d^ refers to the rate of change at a point fixed in space.

Consider now the term ^SS . dt<f)~'^ . S, where df^"^ is the time
rate of change of ^"^ at the extremity of the vector p

This ct^nge depends on the rate of distortion and on the angular
velocity of the anisotropic medium. In other words, it is a

function of the operation of V on a-. Let 6= iu -\-jv+ ^'^^ be the

displacement at the point so that ar= iu-\-jv-\-kw, and let Ux^ etc.,
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denote the deriveds of u and w with respect to a?, y and z. We
have

dW dW dW

7)W 7)W ?)W
=^ . SiVSicr+1^ SjVSicr+1^ S^VS;V+ etc.

= So-ev

suppose, where V operates on o- alone, and where

.dW .dW ,dW
,

, ,
e^=_^- J- k-—, etc (xiv.)

dUx dVx dWx

Introducing this function and an analogous function for the

corresponding magnetic term, and accenting vectors a operated

on by V, we replace (xiii.) by

=Sa-xe+e)v^-jSo-v.(s^,0-i^,+s^,0,-i/5o)

- SSVScr'cp-^S - S/3VScr'iPr% (XV.)

Now this relation, or identity, is formally true for all velo-

cities or, and for all distortions and angular velocities (JWor);
and by the principle of virtual velocities we equate corresponding

terms of the relation. The symbolical statement of this principle

is that the identity (xv.) remains true when we substitute for

(T, V and a any three arbitrary vectors X, jul and v. Hence

#+$.V= - JV(S^„,^-M„+S;8„</>,-W. (XVI.)

because p^= p^ if SXp^= SXp^ for all vectors X ; and again

-cl>-^SSSfj,-^,-^^S8iui, ...(xvii.)

since ^^= 02 i^' Si/^^^ = St/02M for all vectors ja and v.

Replace p. in this expression by V operating in situ on the
various vectors, and we find

because
+V. VV0r^^.^-<^r^^SV/3~ JVS^o0-^^o>(xviii.)

and Y ,YVct>-''S . S = VSSo</>-''S-SSoV . cp'-'S
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Thus we find for the mechanical force ^,

-V. VV0,-i^./3+ ^,-i/3SV^ (XIX.)

The stress across any small area is determined by (xvii.).

In general the terms in 9 and 9^ are small, and we shall

neglect them.

The stress across any small area due to the electric displace-

ment is when we neglect 9,

and ii JUL is parallel to (p~'^6, we have

while if jui is perpendicular to 0"^,

Thus the stress consists of a tension along the lines JJip'^S

and an equal pressure at right angles to these lines, numerically

equal to the electric energy per unit volume. Similar results

hold for the magnetic stress.

Art. 141. When the circuit is at rest, and when there is no
convection current the equations of circuitation become

S-]-i = uYVr], $= -uVVe, (I.)

when we put i, = 0. When moreover the medium is at rest we
have (Art. 139 (x.) and (ix.))

^= 0(€ + e^^), $ = ^X^-^mb), i = ^(€+ eic); (II.)

and from these we obtain the equation

i>C6+€id)+^(€+ €ic)+uWV<l>r^YV6+ uYV^i^=0 ....(III.)

which is explicit in the vector e. Having determined e from
this equation, the impressed forces being known, we obtain S, i

and /§ by direct operations on e. The vectors ^ and VV;; are also

expressible by direct operations in terms of e.

There are two principal types of this equation. For a
dielectric non-conductor ^ is zero, and the propagation of the
disturbance is by waves. For a conductor incapable of storing

electric energy, (p is zero and the propagation is by diffusion.

When there are no applied forces the equations (i.) and (ii.)

may be^ replaced by

<pe-\-^6= uYVr], ^^r}-{-^^ri= —uYVe; (IV.)

and assuming c= 2a„6„e *"^
;; = Jxinrjrfi^*^ , (v.)
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where the a and the h are constant scalars, the equations are
identically satisfied provided e^ and r]n satisfy the equations

hn<t>^n+ ^^n = u'^^rin, hnCp.rjn+ ^,r]n= - uYVcn (VI.)

and the boundary conditions. The scalars b must in general be
determined by an equation arising from the boundary conditions.

The scalars a depend on the initial state of the disturbance.

The particular solutions €„e*«*, ')7ne*«*, are the normal solutions, and for

any two normal solutions we have

u&We^rf^+ b^Se-^cfie^ + hjSrj^^cfi^rji+ Sci^Cg+ ^'72*^/'^! = 0, (vn.)

iDecause SWeii72 = 87^3VV'e/ — Se^VV^^g'- Integrating throughout the medium
.and converting a volume integral into a surface integral we find,

u\SY€i7]r,dv+ 62jS€i<^€2dv + b^\^7)2(t>,rj^dv + ^Se^^e^dv + ^Sri.>^,7]^dv= ;

wJS VcgT^idv + 61jS€2c/)€idv + b2lS7j-^cf)^7j2dv + JSe2<E>€idv + ^Srji^^-q^dv= 0, (viii.)

the second equation following by interchange of suffixes from the first.

If in either of these equations we replace b^ and 62 by conjugate complex

expressions b'±xj -lb" , and at the same time replace e^ and €3 by €'± V- le"

.and 7]^ and 172 by rj' ± >J — Irj", the real part of the equations is

u\S (Ve'r]'+ V€"r;")dV+ 6'j(Se'<^e' + Se"<f>e"+ Srj'cfi^r)'+ Sr;"<^,7y") dv

+ j(S€'<l>e'+ S€"*e"+ S-q'^,7j' + Sr]"^^7j")dv= 0, ... (ix:)

remembering in the reduction of this expression that
(f>

and
<f>^

are self-

conjugate (Art. 140 (vii.)). The surface integral is the total inward flux of

energy across the boundary due to the disturbances e', 97' and e", rj". If no
energy is communicated from outside the boundary, this is zero or negative
—zero if no energy from inside escapes, and otherwise negative. The
remaining integrals are all negative, the coefficient of b' being minus double
the energy stored by the two distributions separately and the remaining
integral being minus the energy wasted by conductive friction. Hence in

any case b' cannot be positive. If there is no energy radiated and none
dissipated, b' must be zero or else e, e", t]' and 17" must vanish so that there is

no disturbance. On the whole then, the real parts of the scalars b are zero or
negative when the medium receives no external energy ; when in addition
there is no dissipation and no radiation of energy across the boundary the
real parts are zero, and in this case there are permanent oscillations within
the medium, the scalars a being determined once for all by the initial

conditions.

Art. 142. We shall now give a sketch of the theory of the
propagation of light in a crystalline medium adopting Clerk
Maxwell's hypothesis. The medium being supposed non-con-
ducting the functions $ and $^ disappear, and the equations of

a free vibration become

^o=<P^o = '^^^Vo> A=^//o=-'^'^^^0' (!•)

when (j) and 0^ are two self-conjugate functions which are

constant if the properties of the medium are the same for the

same directions at all points."*

* The suffixes are employed in these equations as we shall have more to deal

with the vectors e and rj defined in (11.).
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Assuming for a plane wave (Art. 138, p. 247) that

eo= €sin7iu— S^j, r}Q= r] sin n(t— S-\ (n.)

where v is the wave-velocity, we find on substitution in (i.)

S=
(l)6
=uYv-\ ^= 0,>/=-uVtf-ie (III.)

From these we obtain among other relations

—W= S€S= Se<f)€= uSev-^rj= Sr](l)^T] = SriP; (iV.)

which show that the magnetic energy per unit volume is equal

to the electric energy, for we have

W=iS€o^eo= hi0 8m'n(t-S^')=W^ (v.)

The total energy is ^<;sin%iU— S^j, and the mean energy is

consequently ^w.
^

Again if p represents the ray-velocity we have

% S^=l, Spdv-^ = (VL)

for all differentials dv. Differentiating (m.)

I d^= 0de= uV(du-i.>;+ u-M»;),

d/3= 0,d;7=-uV(di;-^€-|-u-ide); (vn.)

operating by Se on the first, or by S;; on the second, and
attending to (ill.), we find

I
Sdv-Wefj = 0, (viii.)

because by (iv.) ScdS and S^drj are each equal to — ^dw.

As this holds for all values of dv we must have p parallel to

Yet], and by (iv.) we find for the ray-velocity

uYen
I p='^. (IX-)w
and this, it should be noticed, is parallel to the Poynting Flux
(Art. 140). Again it is easy to deduce from (iii.) and (iv.) the

expression for the wave-velocity (v)

, Y8S uw ,
,v"^=^^, or u= ^7-3^ (x.)uw YpS

We have now enumerated six vectors depending on the

propagation of the wave which are connected by the relations,

y^'^YS^, €=-YI3p, v = -^'pS;uw ^ u ^^ u ^

.(XI.)

J.Q.
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and these vectors when drawn from a common origin pierce a

concentric sphere in a pair of supplemental triangles.

When some one of the four vectors /3, S, e and rj is given, all

the vectors can in general be determined subject to a choice of

sign. If € is given, we have S = <j)e,w= - SeS and

for the equations give SrjS= 0, S/3e= 0, or St]<f>€= 0, Sr]<p^e= 0,

and the suitable tensor is found by substituting r]= xY<j>6(l),€ in

w= —St](p^ri. Hence ^, p and v~^ can be found without ambiguity
when the sign is selected. The case of exception is when e (or rj)

is a solution of the equation

Y(/)a<l)^a = 0, (XIII.)

or, in other words, an axis of the (generally non-conjugate)

function 0"^/ ^^ 0/~^0-

When JJv or Up is given, two independent values of the

vectors can in general be found, and the solution corresponds to

the splitting up of a wave or ray into two plane polarised waves
travelling with a given direction for the wave- or the ray-velocity.

Let us seek to determine S and /3 from the second and third of

(XI.) when Uu is given. We have

S=~J,j>,-'^l!v, i8
= ^VU„.^-i5, (XIV.)

and from these, when we eliminate (3 and S in turn, and introduce

new linear functions <py and (p^y, we find

Thus S is an axis of the linear vector function denoted by (py

and Tv^ is the corresponding root, and because (py has one zero

root (corresponding to the axis (pUv) there are only two finite

latent roots or two values of the wave-velocity along the

direction Uu. That the functions ^^ and <f>^y have the same
latent roots appears from the fact that their latent cubics are

equivalent to the equation in Tv^ obtained by eliminating ^ and

S from (xiv.). If Tu'^ is the second root of (py and if S' is the

corresponding axis, we have

Tu^S^^ - M' = u'SYVvcp - ^S'<p, - WVv<l> -M= Tv'^SS'^ " M,

and therefore (by (xiv.)), since Tu^ is not generally equal to Tu'^,

SScp-^S' = 0, S^0,-i/3'= O (XVI.)

But these conditions may be written in the form

S^' = 8(5^6= 8/3^7' = S/3',;= 0, (XVII.)
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where e, 13' t] , etc., correspond to ^'. Thus <5' is perpendicular to

e and v, and therefore parallel to /9 by (xi.), and /3' is parallel to

(5. In fact we have

TO'=+U^, U^^=TXJ(5, (XVIII.)

because Uu= UV^^S= UV^'^'.

Since ^ and ^' satisfy the relations (compare (xvi.))

S(50-M'= O, S%-i^'= 0, S^Uu= 0, S^'Uu=0, ...(xix.)

we easily find on putting Uu=UV(5^' = V<5(5' : TV^«5' in (xv.) that

'?^2S^>,-i^'S^0-i^= Ty2TVdT2, (XX.)

and that

u(S^>,-M^S^0-^^)^ ,_ u(S^0,-MS^V-^^)^ . .

""" W? '
""
~ Y^ ' ^ -^

This result leads to a simple construction. Let the quadrics

SnT0-%= -1 and 8^0,-1^7= -1 (xxii.)

be constructed. Then by (xix.) ^ and ^' are parallel to the pair

of common conjugate radii in the central plane at right angles

to the direction of the wave-velocity. Let vs and cr, be respec-

tively the vector radii of the first and second quadrics parallel

to (5, and let xs' and trr/ be those parallel to o', then we have

u , u , .

\ "=-Y^"" = -Y^- <^^™->

and from this construction everything relating to the wave can
be determined. For the first set of signs in (xviii.) we have

S = Z^Js/w, P= V5'Jw, S'= TS'sfw', j8'= — VS^sfw', \

€=(l)-'^V5jw, n=<l>-'^TS^slw, e=^-'^T^'Jw\ ,;'=-0^-lsT,V^</,[(XXIV.)

where w' is double the mean energy per unit volume for the
second wave.* (Compare (iv.).)

From the fifth and sixth of equations (xi.) we have

eTp-i = u-iV9!>,i;U/o, f(Y:p-^ = U-WJJp.^e\ (XXV.)

and as in (xv.) we may write,

* Note that 0~^aT has the same direction as the central perpendicular on the
tangent plane to the quadric St3'0~^trr= - 1 at the extremity of tD" and that its

length is the reciprocal of that of the perpendicular.
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and if we take e and e' to be the two axes of 0p corresponding

to the two finite latent roots Tp-^ and Tp''-^ of the function, we
find as before

for it appears that Ue"= +U;7, U>?''=+Ue.

We can write down results analogous to (xxiii.) and (xxiv.)

for the various vectors related to the waves whose ray-velocity-

is along a fixed direction JJp.

We now return to equation (xii.), which we may write in the form I

rj=Ycf>e<{>^€J(~r-y^ ,.\ (XXVII.)

where m, is the third invariant of <^, and where * \ •

^

w==-Secf>e, w^^-Secfy^e, io'=-= -Secfycfi-'^cfie, (xxviii.)

because we have

Expressing p and v~^ in terms of e, by (xi.),

_ uY€Y(f>€(f),€ _ u{w,<^€'-wc\>,e)

From these equations, on attending to (xxviii.),

^p(w,cf>-wcf>,r^p^o, sp<^rV=-^; (^^^O

Sv-\w'<h-^-wcf,rT^v-^= ^^ Su-^<^,v-i= -'^; (xxxi.)

(w,(b~wcby^p=mr'^uW-wd)-^cfi)-^v-^= ,-—-^ 5xT 5
.-.(xxxii.)

mXw'-wcf)(f)~^)p=u%w,<f>-wcl)^)v~^ ;.... (xxxiii.)

mX<i>''^w' -iv^~'^)p= u\io^-w4)~^(j))\r^; (xxxiv.)

the last relations, which alone are likely to give trouble, being derived from
(xxxii.) by operating with {vf — W(^~'^<^){w^<j>~'^(l) — w) on both sides, remember-
ing that in this the factors are commutative.

From (xxx.) and (xxxi.) the equations of the wave-velocity surface and of

the. ray-velocity surface may be written down, and equations (xxxiii.) and
(xxxiv.) are suitable for investigating the cases of indeterminations which
correspond to external and internal conical refraction.

Suppose, for example, that w'=h'^w, where h^ is a latent root of the function

4><j>r^ and that /3 (not now the magnetic induction) is the corresponding axis

while /?' is the axis of the conjugate function <^~^4^ corresponding to the same

.(xxix.)

* It should be noticed that w' has not here its recent meaning.
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root. The equation (xxxiii.) fails to give a determinate value of p, and
operating on it by S/3', we find

S/?'<^v-i=0, (xxxv.)

since (fif3'= b^<f>,f3'. Two other equations for v are obtained by putting
w'= b^w in (xxxi.), and these are

I Sv-\b^cf>-i-cf)-^)-^v-^ = 0, Sv-^,v-^= -mpH-'^ ; (xxxvi.)

and from these three equations we find four values of v~\ say ± v{'^ and
± v{'^. Substituting the value v~^ in (xxxiii.) and replacing w, by its value
in terms of p by (xxx.), we get

mf}P- - (f><fi-^)p+ m^(jiVi~^Sp(t)~^p+ u'^cfi^vi'^= 0, (xxxvii.)

and this equation represents a plane conic. For we have seen (xxxv.) that
each vector in this expression is perpendicular to /?', so that if a and y' are
the remaining axes of (f)r^(f> corresponding to the latent roots a^ and c^, the
equation is equivalent to the pair

mXb^-a^)Sa'p+ Sa'cf)Vi-^{m^Sp<f>-'^p+ ahc^)=OA
^

'

mX62 - c2)Syp+ Sy'(f>v{-^ (m,S/)(/),-V+ ^V)= 0./
(xxxviii.)

In order to calculate in the most explicit manner the vectors v{-^, etc., we
may by Art. 71, p. 100, reduce the functions

<f>^
and

(f)
to the trinomial forms

<^A=-2aSaA, ^A=-Sa2aSaA, <^r^A= -2a'Sa'A, <^-iA= - 2a-VSa'A,

where identically A= - SaSa'A= - 2a'SaA.

Putting v~^—ap+ f3'q + y'?', equation (xxxv.) becomes ^'=0, while (xxxvi.)
reduces to p^{c~^-b~^)= r^b~^-a~^) and p^+ r^=m^bh(,-^, and we finally get
foi' the four vectors

v-^=^JKsJ^UeL^^^a^l^\ (x^:x.)
I

u \ a y a^ — c^ c ^ a^-c^J

Again, taking p=cuv+ f3;i/+ yz, and substituting in (xxxvii.), we find a
simple expression

m/Xb^-a^)ouv+ (b^-c^)yz} - mXaa^p+ yc^r){a;^+f+z^)+ {ap+ yr)2(P= (xL.)

for the equation of the conic traced out by the extremity of p. We notice

that m,= SafSy^.
In order to obtain more explicit forms for the equations of the wave-

surface and the wave-velocity surface, we note that the first equation (xxx.)
expands into

wj^Spyfrp - w^wSp'^p -\- v^Spyfr^p= 0,

where yfr and x/r^ are Hamilton's auxiliary functions and where

I
By the aid of the second equation (xxx.) this becomes

f Spylrp^pylr,p+ u^^p'^p+ u^= (xli.)

In lijj:e manner
^

Sv-^\jr-^v-^8v-^yJrr^v-^ + u-^Sv-^^-iV-^+u-^= (xLii.)

is the equation of the wave-velocity surface, where

^-iYXp,^Yct>--^X<f>rV+ Ycl>r^X<f>-y.
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Other forms may be given to the equation of the wave-surface such as

m/2SaV2262c2Sa'p2 _ uHi,2 (62+ c^)Sa>^+ n^= 0,

derived from (xli.), and

V Say ^^
m^a22Sa /o2 _ -^^2 '

derived from (xxx.) by the aid of the trinomial expressions for the functions,

but in problems treated by quaternions it is frequently preferable to deal

directly with vector expressions rather than with the scalar equations of

surfaces obtained by eliminating certain quantities from the vector equations.

Ex. Show that the wave-surface may be derived from a Fresnel's wave-
surface by a pure strain.

[Put Vr/p= p and Sp(w^(f> - tv<f>)~'^p= Sp{w^\lr/ (fiyfr/^ - wm)~^p\ also

v^w^— — wSp^^p= wTp'2j etc.]



CHAPTER XVII.

PROJECTIVE GEOMETRY.

Art. 143. There are several interpretations which may be
assigned to a quaternion and which we have not yet explained.

We now propose to show that a quaternion is capable of repre-

senting a definite point loaded with a definite weight or mass,
and throughout this chapter we shall speak rather indifferently

of quaternions or of points.*

In the identity

9=Sq.{l+^) = 8q.{l+OQ) if OQ=g, (l.)

it is manifest that the point Q at the extremity of the vector OQ
drawn from an assumed origin is determined when the qua-
ternion q is given, and that Sq is also determined. We regard
Sq as a weight or a mass concentrated at the point. We shall

sometimes use capital letters concurrently with small letters,

q = Q.Sq, Q=1+0Q, (ll.)

to denote points of unit weight, or unit points, so that Q.tv
denotes the point Q weighted with w. Thus SQ= 1, VQ= 0Q.
The difference of two unit points is the vector joining them,

Q-P= l + OQ-(l-fOP)=OQ-OP-PQ; (ill.)

and the origin is the scalar point

0=1. (IV.)

A vector represents the point at infinity along its direction, as
appears by allowing Sq to diminish indefinitely in (i.) while Yq
remains constant, for OQ will then increase indefinitely in length,

so that at last Yq represents the point at infinity in its direction.

*See Trails. B. I. A., vol. xxxii., and Phil. Trans., vol. 201, pt. viii. I regret
that at the time of publication of these papers I was not acquainted with an able
memoir by Dr. James Byrnie Shaw {American Journal of Mathematics, vol. xix.,

pp. 193-216), in which somewhat similar results are obtained.
-
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The relation

= S(p+ q+ r)+ Y(p-^q+ r) (v.)

contains the principle of the centre of mass. It asserts that the

point p+ q-h'i' is situated at the centre of mass of p, q and r,

and that its weight S{p-\-q-\-T)h the sum of the weights of the

three points. In another form,

— (m, +mo+ mo) I H

—

^^^—,—^-^ — )•

Ex. 1. The middle point of the line ab is ^(a+ b).

Ex. 2. Interpret the relation

regarding ^p+ Yq, etc., as representing weighted points.

Ex. 3. The centre of mass of equal and opposite weights is at infinity.

Ex. 4. The equations of the line a, h and of the plane a, 6, c are

q=xa-\-yh^ q=xa-\-yh+ zCj

where x, y and z are scalars.

Ex. 5. Corresponding points of similar divisions on the lines ah and
cd are , t

and corresponding points of homographic divisions on the same lines are

a-\-tb, c+td,

t being a variable scalar.

[See Art. 37, p. 41.]

Ex. 6. The equation q= a+2ht+ct'^ represents a conic.

Ex. 7. The equation q^a+tb+ u(c+ td)
'

Represents a ruled quadric, ^ and u being variable scalars.

Art. 144. In order to develop this method, it becomes neces-^

sary to employ certain special symbols, and with one exception

these are to be found in Art. 365 of Hamilton's Elements of
Quaternions, though in quite a diiFerent connection.

For any pair of points, we write

(a,6)= 6Sa-aS6, [a, 6] = V. VaV6; .(i.)

and in particular, for points of unit weight (A = 1 + a, B = 1 +/3),
these become

' (A, B)=B-A= /3-a, [A, B] = V. VAVB = Va/3= Va(^-a). (ll.)
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Thus (a, b) is the product of the weights into the vector connect-
ing the points, and [ab] is the product of the weights into the
moment of the vector connecting the points with respect to

the scalar point or origin. The two functions (a, b) and [a, b]

completely determine the line ab.

For any three points we write

[a,b, c] = (a,b, c)— [b, c]Sa— [c, a]Sb— [a,b]Sc,)

(a, b, c)= S[a, 6, c] = S. VaV6Vc= Sa[6, c],
|--("w

and for unit points A = l-}-a, B = l+/5, C=l-|-y, these become

[A, B, C] = Sa/3y- V^Sy- Vya- Va^, (ABC) = S . a/3y. . . .(iv.)

Hence it appears that the quaternion [a, b, c] determines the

plane of the points, and regarded as a point symbol [a, b, c]

represents the reciprocal of the plane with respect to the unit

sphere having its centre at the scalar point. For the vector

y [abc] : S [abc] is minus the reciprocal of the vector perpendicular
from the origin on the plane SyoV(^y-|-ya+ a^) = Sa/3y ; that is,

its extremity terminates at the pole of the plane with respect to

the unit sphere. The symbol (a, b, c) is the" sextupled volume of

the pyramid OABC multiplied by the weights 8aS6Sc.
Any quaternion may therefore be regarded as representing at ^

pleasure a plane or a point—reciprocals with respect to the unit ^
sphere.

The last special symbol we require at present is

{abcd)= ^a[bcd]; (v.)

or for unit points,

(ABCD)= S/3y^-Say^-fSa/5^-Sa^y (vi.)

Thus (ABCD) is the sextupled volume of the tetrahedron ABCD,
and {abed) is the same volume multiplied by the product of the
weights.

It will be observed that the five functions are combinatorial,
that is to say, they remain unchanged when to any of the
quaternions involved in one of the functions is added a sum of

products of the other quaternions multiplied by scalar coefficients.

For example, [a+ xb+ yc, b, c] = [a, b, c]. More generally when
the constituent quaternions are replaced by linear functions of

themselves with scalar multipliers, the functions are merely
multiplied by a scalar. If any linear relation with scalar co-

efficients connects the constituents of a function, the value of

the function is zero. If any two constituents are transposed the
function changes sign, and in fact the laws of combination of
the rows or columns of an ordinary scalar determinant are

obeyed by the constituents of the functions.
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Art. 145. In terms of these functions, the equation of the

line ah and of the plane abc are respectively

[q, a, 6] = 0, (q, a, h, c)= 0; (l.)

the first expressing that q, a and b are linearly connected, or

that the plane qah is indeterminate; the second requiring the

volume (QABC) to be zero.

The equation of the line ab may also be written in the form

' (pqab)= 0, (II.)

where ^ is a point wholly arbitrary; and the equation of the

plane may be replaced by

Sql= 0, where l= [abc], (iii.)

the point I being, as we have said, the reciprocal of the plane

with respect to the unit sphere*

8.^2^0, (IV.)

or S . (1 + 0Q)2= 0, or OQ^+ 1 = 0. Putting L= 1 + OL, the equation

of the plane takes the known vector form S(1+OQ)(1 + OL)=
The plane at infinity is

S?= 0, (V.)

this being the reciprocal of the scalar point (the centre) with
respect to the unit sphere ; or otherwise if q represents a point

at infinity it is a vector (Art. 143, p. 263), so that Sq = 0.

The formulae of reciprocation

([abc]; [abd])= [ab](abcd); [[abc]; [abd]]= —(ab)(abcd), (vi.)

are worthy of notice. They connect two points a and b with
two points [abc] and [abd] on the reciprocal of the line ab, and
are easily verified by vectors. Formulae, such as these, are

often suggested by the forms of the expressions. For example,

the left-hand members of the above relations evidently vanish

if a, b, c and d are linearly connected. We infer that (abed) is a

factor, and the remaining factor must be a combination of (ab)

and [ab].

It is often useful to observe that if i, j and k are mutually
rectangular unit vectors,

(l,i)= i, [ij]=k, [l,i,j]=-k,

[i,j,k]=-l, (l,i,j,k)=-l;... (vii.)

and relations such as these may be employed to ascertain the

numerical factors in expressions such as (vi.).

* In ordinary homogeneous coordinates the auxiliary quadric is generally taken

to be x^ + y^ + z^ + iv^= 0. It is more convenient in quaternions to employ the

unit sphere as the auxiliary. There is however no loss of generality. (Compare
Art. 153 (X.), p. 284.)
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Ex. 1. Two lines, a, 5, and c, c?, intersect if

(abcd)= 0.

(a) This condition may be also written in the form

S(ab)[cd]+ S[ab]{cd)=0.

Ex. 2. The point of intersection of three planes

Slq= Oj Smq= 0, Snq= is q= [l, m, ?i].

Ex. 3. The line of intersection of two planes 8^2-= 0, Smq= is

q= [l,m, n],

where n is an arbitrary quaternion.

Ex. 4. If four planes ?, wi, tj, p have a common point

(l, m, n, p)= 0.

Ex. 5. The line «, b intersects the plane Slq= in the point

aSlb-bSla.

Ex. 6. The general equation of a conic is

q= at^-\-2bt+Cj

where ^ is a scalar parameter.

(a) The expression q= a^^^a + ^ (^i + ^2)+ <^

represents the pole of the chord joining the points ^, and ^2> or the tangent
at ^1 if ^2 is variable.

(b) The pole of the line in which the plane Slq= meets that of the
conic is q^ ^Slc - 2bSlb+ cSla.

(c) The centre is q= aSc - 26S6+ cSa.

(d) The conic is a parabola if SaSc= (S6)2.

(e) What kind of a conic is represented by

q= At^+ 2Bt+ cl

(/) If q, 5'i, q2, qs and q^ are any five points on a conic, and if t, t^, t^^ t^

and ^4 are the corresponding parameters, the anharmonic of the pencil

(g - gi^ g - g2) • (g - g3> g - ^4)^ (^1 - ^2)fe -O
(g - g25 g - gs) • (g - g4> g - gl) (2^2 - ^3X^4 - ^1)*

Ex. 7. The general twisted cubic is

q= {a, 6, c, 4^)3.

(a) The equation g= («) ^> c, c^jj^i, ljSy2} 1)^

represents the tangent at the point ^2, h being variable.

(6) The osculating plane at a point is

q= {a,b,c,d\h,\^t2,\\t^,\\

two of the scalars ^1, ^2» ^3 being variable and the other being fixed.

(c) The equation in (a) represents the tangent line developable when
^1 and ti both vary.

{d)\i h is given it represents the conic in which the osculating plane at

^1 cuts t¥ie developable.

(e) The locus of the poles of a fixed plane 8^5'= with respect to these
conies is the conic,

q= t^(aScl - 2bSbl+ cSal)+ h{aSdl - bScl - cSbl+ dScd)+ b^dl - 2c^cl+ dSbl.



268 PEOJECTIVE GEOMETEY. [chap. xvii.

(/) The osculating planes at the points in which the plane Slq= meets
the curve intersect in the point

q= aSdl-3bScl+ 3cSbl-dSal,

and this point lies in the plane.

(g) The symbol of the osculating plane Spq= at the point t is

p—[at+ b, bt+ c, ct+ d]; / '

and this equation also represents the cuspidal edge of the reciprocal
developable.

(h) The last equation may be written in the form

p=t^[abG]+ t^[abd]+ t[acd] + [bcd].

(^) The symbol of the plane containing three points i^i, ^2? h is

p= 3t^t2t3[abc]+ 22^2^3 . [abd] + S^j . [acd]+ 3[bcd].

(j) The anharmonic of the group of planes joining two variable points on
the cubic to four fixed points is constant.

Akt. 146. Hamilton has given two relations connecting jSve

arbitrary quaternions,

a(bcde)+ b(cdea)+ c(deah)+ d(eabc) \-e{ahcd)= (i.)

^^^ e{ahcd)= [hcd'\ Sae- [acd] Sbe+ [abd] See- [abc] Sde; .. . (ii.

)

which are of great importance and which correspond to the
vector relations

SSa/Sy= aS^yS+^SyaS+ ySa^S = Y/SySaS+YyaS^S+ Ya/SSyS.

The first has been virtually proved in Art. 39, p. 43, and we
may at once verify it by writing

xa-\-yb+ zc-\-^vd-\-ve= 0,

where x,y, z, iv and v are scalars to be determined. From this,

by the combinatorial property, we have

= (a, b, c, xa-\-yb+ zc+vjd-\-ve) = (a, b, c, wd+ ve),

which gives the ratio of w to v. This relation enables us to

express any point in terms of four given points, so that we may
if we choose use an arbitrary tetrahedron of reference, for

example abed.

The second shows how to refer any point to four given planes

Saq = 0, Sbq = 0, Seq= 0, Sdq = 0;

and the truth of the formula may be verified by observing that

we get consistent results when we operate with Sa, S6, Sc
and Sd.

It will be observed that the relations (i.) and (ii.) are linear

with respect to each of the five quaternions, so that the weights
of the points do not enter. In fact, just as in tetrahedral

coordinates, geometrical relations depend on homogeneous func-

tions of the quaternions. Though it is in general distinctly

disadvantageous to employ any system of coordinates in
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quaternion investigations, or even to refer in thought to any
tetrahedron or axes of reference until a problem has been
reduced to its ultimate simplicity, yet it is worth while observ-

ing that if we express a variable quaternion q in terms of four

given quaternions a, h, c, d by means of the relation

q = xa-{-yh-\-zc+ wd, (in.)

the scalars x, y, z and w are the anharmonic coordinates of

Art. 40, p. 43.

Ex. 1. The line de meets the plane ahc in the point

d{ahce) — e{ahcd).

Ex. 2. Show that

{{ahc'\, [def])= [ef^{ahcd)^[fd]{ahce)+ [de'\{ahcf\

[[ahc], [def]]^ - {ef){ahcd) - (fd)(abce) - {de)(abcf).

[Compare Art. 145 (vi.). Four points on the line of intersection of the
planes abc and def are d{abce) — e(abcd) and d{abcf)—f{abcd), and the
functions [a'b'l and —{a'b') for two points on the line are proportional to

the right-hand members of the above. The weights are correct, and it on]y
remains to determine the numerical factors. Putting d=a and e= 6, we
verify the signs by the equations cited.]

Ex, 3. The point of intersection of the planes abc, dcf and ghi is

I n. b c

[[abcl [def], [ghi]].

a

{adef) (bdef) (cdef)

(aghi) ibghi) (cgki)

[Equating the left-hand member to j^a-{-i/b-\-zc, we have

x{adef)+y{bdef)+z{cdef)= 0, etc.,

and to determine the factor we may put

«=1, h=i, c==j, [abc]-=-1c, [def]= i, [ghi]=j.

The left-hand member becomes -f-1, and the determinant also reduces
to -fl.]

Ex. 4. Given four triangles a„6„c„, where 7i= l, 2, 3 or 4, show that six

times the volume of the tetrahedron determined by their planes is

{a^a^b^c^ {bia^2<^^ {c^a^^c^

{a^a^b^c^) {b^a^b^c^ {cia^h<^^)

{a^a^b^c^ {h^a^b^c^ {c^a^b^c^)
n(a„6„c„)

[This follows from the last example.]

Ex. 5. Establish the identities

Saa' Sa6' Sac'

S6a' S66' S6e'

Sea' Sc6' Sec'

Saa' Sa6' Sac' Sao?'

S6a' S66' S6c' ^bd'

Sea' Sc6' Sec' Sec^'

^da! ^dh' Scfc' S^'

= -S[a6c][a'^)'e'];

= —{abcd){a'b'c'd').
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[The first determinant is combinatorial in a, h and c and also in a\ b'

and c'. It vanishes if either triangle reduces to a line, and conversely.
Hence it must be a scalar function of [abc] and of [a'6V], that is (having
regard to the weights) it must be of the form

j;SY[abc]Yla'b'c]+^S[abc]S[a'b'c'l

where x and y are numerical factors. For a= a'= i, b= b'=j\ c^d= k we
get,y= -1, and for a= a'=l, b= b' = i, c= c'—j we find x= —1.]

Ex. 6. Prove that

S6a' S66'
= S(a6)(a'6')-S[a&][a'6'].

[This is most easily proved by vectors. Compare Art. 145, Ex. 1.]

Ex. 7. Find the equation of the hyperboloid having three given
generators a6, a'b' and a"b".

[There are various methods of finding this equation, but we shall give a
method to illustrate the use of Ex. 3. If p and q are any two points on
a generator of the opposite system to the given lines, the conditions of

intersection are (pqab)= 0, (pqa'b')= 0, {pqa"b")= 0. Regarding these con-
ditions as the equations of planes, p being the variable point, the condition
that the planes should intersect in a line is [[5'a6][5'a'6'][^a"6"]]= 0, which
becomes {aqab'){bqa"b") — {bqa'b')(aqa"b")=0.]

Art. 147. The results of the last article are particular cases

of a very general theory applicable not only to quaternions but
to any operators or quantities which are associative and
commutative in addition."^

If /(a, b) is a function of two quaternions distributive with
respect to each, the function

f(a,b)-f{b,a) ...(I.)

is combinatorial in a and h, for it remains unchanged when we
replace a by a+ 7/6 or 6 by b-\-xa, because

/(a +2/6, b)=f{a, b)+yf(b, b) and/(6, a+yb)=f{b, a)+yf{b, 6).

In like manner if f(a, b, c) is distributive with respect to a, b

and G the function /(a, b, c)—f(b, a, c) is combinatorial in a and
b', the function formed by subtracting from this the result of

interchanging a and c is combinatorial in a and b and also in

a and c ; and the function of six terms

2±/(a,6,c) (II.)

formed by transposing a, b and c in /(a, b, c) in every possible

way, by changing the sign after every transposition of a pair of

constituents and by adding the results together, is combinatorial

in a, b and c. Similarly if f(a, b, c, d) is distributive in a, b, c

and d, the sum 2±/(a, b, c, d) (ill.)

•^See an interesting paper by Prof. A. S. Hathaway, Proc. Acad, of
Science, 1897.
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is combinatorial in a, h, c and d ; and finally

2+/(a, h, c, d, e) (iv.)

is combinatorial in a, h, c, d, e and vanishes identically because
the five quaternions are linearly connected.

It is geometrically evident from Art. 144, that every com-
binatorial function of two quaternions a and b must be a function
of (ab) and [ab]—the two vectors which determine the line ab.

Every combinatorial function of a, b and c must be a function of

[abc] which determines the plane abc ; and the only combinatorial
function of four points is (abed)—the sextupled volume of the
tetrahedron determined by them. Hence (ii.) is a linear function
of [abc] and (in.) is the,product of a quaternion by the scalar

(abed).

Now in forming these sums, we may proceed step by step.

For example, let us transpose beds in f(a, b, e, d, e), leaving a
unchanged. We obtain the sum

^±f(%, h, e, d, e),

where the temporary suffix applied to a denotes that it is free

from the operation indicated by 2+ . Next interchange a and b
and change the sign and permute a, c, d, e, leaving b unchanged.
We get -^±f(bo,a,c,d,e).

Finally the vanishing combinatorial function (iv.) is expanded
in the form

2 ±f(aj)ede)- E ±f{b^aede)+ S ±f(c^abde)- 2 ±f(d^abee)

+ 2+/(6oa6c(Z) = 0, (V.)

and this general result includes Art. 146 (i.) as a particular case.

Again we may leave two or more quaternions fixed and add
together the sums obtained, so that for example

2 ±f(a^b^cd)- 2 ±f(a^c^bd)+ etc. = S ±f(abed) (vi.)

These expansions correspond to the expansions of determinants
by minors.

Ex. Find the sources of the functions

(lahc\ d), [[abc], cTj,

which are combinatorial in a, b and c, or in other words find linear functions
of a, 6, c from which the combinatorial functions niay be derived by-

summation and transposition.

[Since (abc).Yd=[bc]S.aYd+[ca]S.bYd+[ab]S.cYd

and . Y[abc]Sd=:-[bc]SaSd-[ca]SbSd-[ab]BcSd,

the first expression is 2± 6cSac?Q. Similarly the second expression is

-V

.

[be]Yd.Sa-Y. [ca]YdSb-Y .[ab] YdSc,

and the function may be derived from - V6SVcV^ . Sa or from - b^cd^^^
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certain parts of this latter expression vanishing under transposition and
summation. As a determinant, the function is

a
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five others A', B', C, J)\ E', paying no attention to the weights.

Such a function is

. _ AXBCDg)(BVD'EO B^ACDg) (A'CTD^EQ
•^^~ (BCDA)(BCDE) "*" (ACDB)(ACDE)

,
CXABDg)(A'B^D'EO DXABCg)(A'B'C'E^)

"^ (ABDC)(ABDE) (ABCD)(ABCE) '' '"^^'^

for replacing g by A we get /A=A'(B'C'D'E')(BCDE)-\ etc., and
putting g = E, we have /E = E'(A'B'C'D')(ABCD)-i in virtue of the
relation connecting five quaternions. Thus the function (v.)

eflfects the required transformation, and it is evidently deter-

minate to a scalar factor. (Compare Art. 65, Ex. 5, p. 92.)

Art. 149. A linear function f being regarded as producing
a transformation of points, the inverse of its conjugate f'~'^

produces ike corresponding tangential transformation.
For any quaternions p and q,

Spq= Spf'^q' = Sq'f-^p = Sq'p, if q'=fq, p=f-'p (l.)

Hence any plane Spq = 0, in which q is the current point and

p the symbol of the plane, becomes after the transformation
Sp^q'= 0, where q' is the transformed current point and where p^
is the transformed symbol of the plane. In other words when
points are transformed by the operation of /, planes are trans-

formed by the operation of /'"^.

Art. 150. Now the symbol of the plane may be expressed in

terms of three points in the plane (Art. 145, p. 266), and therefore

for some scalar factor n,

nf'--'[abc] = [fa,fb,fc] = r[a, b, c] (l.)

since we may either transform the symbol of the plane in one
step hy f'~^ or we may transform the points a, h, c which enter

into the symbol by /. The function F' is a new linear function

analogous to Hamilton's yjr', and it is connected with f'-^ by the
relation rf^^j^p'^py (jj ^

The scalar n may be explicitly expressed in terms of four
arbitrary points, a, b, c, d, by operating with S.fd on (i.), when
we find n(abcd)= (fafbfcfd) = S [abc] Ffd, (iii.)

where F is the conjugate of F.

Thus in addition to (ii.) we have,

n=fF=Ff; (iv.)

and we inay also write

niabcd)= (fafbfcfd) = (fafbfcfd)
F[abc] = [fafbf<

J.Q. S

F[abc] = [fafbfc]= nf- ' [abc]. j
^""'^
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Eep]acmg/by/+^, where t is a scalar, the relations

nt = 71+ tn'+tV+tV+ ^4 =ftFt = (/+ t){F+ tG+ t''H-\- 1^) (vi.)

are obtained, where the new scalars n, n'\ n'" and the new
linear functions G and B. are defined by

n\abcd) = 2(afbfcfd) ; n'\abcd)= ^{cibfcfd) ;

n"{abcd)= ^{abcfd) ;

G[abc-\ = [a,f%fc\+ [f'^, b,fc]-V[faJ% c];

Hiabc] = [/'a, 6, c] + [a, /6, c] + \a, b, fc\

Moreover, on account of the arbitrariness of t in (vi.),

n=fF, n'=fG+ F, n"=fH+G, n'''=f+H; ...(viii.)

and from the symbolical equations may be deduced the following

explicit expressions for the auxiliary functions

H=n'"-f; G = n"-n'J+f: F=n'-nJ+n'"P-p] (ix.)

and the symbolic quartic

n-ny+n"P-n'y'+f = (x.)

satisfied by the function /.

Art. 151. Let t^y t^, % and t^ be the roots of the scalar quartic

t^-n"'t^+nr~-rit-\-n = 0, (i.)

so that the symbolic quartic may be expressed in the form

{f-k){f-t,)(f-k){f-h)^0 (II.)

It follows just as in the case of the vector function that

(/-y3i= 0, where (f-t,)(J-t,)(f-t,)q = q, (m.)

and that g^ is a fixed point—a united point of the transformation

—one of four q^, q^, q^ and q^. The point q is quite arbitrary.

The equations

P= {f-ti)q, P = if-h){f-t,)q, (IV.)

represent respectively a united plane of the transformation and
a united line—the plane [q^, q^, gj and the line q^q^.

. We have also by the property of the conjugate,

Sq;p = &q;(f-t,)q= Q if (/'-yg/ = 0; (V.)

and thus the united points (g/, q<^, q^ and q^) of the conjugate

(/') are the reciprocals with respect to the unit sphere (Art. 145)

of the united planes of /. In other words, the united points of
a function and of its conjugate form tetrahedra reciprocal

with respect to the unit sphere.

Ex. 1. Prove that fq may be reduced to the form

y^= (e+ €)S^ + Se'V^ + </>V^, I
and determine its latent quartic in terms of the linear vector function ^,
the vector-s e and e' and the scalar e.
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[By the distributive principle fq=f^q+fyq, etc. To determine the
quartic assume fq = tq= t(Sq + yq), and equate scalar and vector parts. We
find (e-t)Sq + SeVq = 0, {<f)-t)Yq + eSq=0, so that

(e-t)-S€'{cf>-t)-h= 0.]

Ex. 2. Construct a function with four zero latent roots.

[Assume fa= h, fh= c, fc= d^ /c?=0.]

Ex. 3. Examine the nature of the symbolic equation satisfied by the
function

^^= a{bcdq)+ b{cdqa)+ c'{dqah)+ d'{qahc).

[Every point a+ uh on the line a, 6, is a united point of the function, and
the i^ function oi fq — {abcd)q vanishes identically. The quartic degrades
into a cubic]

Ex. 4. Construct a function satisfying a symbolic quadratic.

[This may arise from one of two causes. The function may have two line

loci of united points a, b and c,d; or it may have a plane locas of united
points a, 6, c. In the first case the latent quartic is a perfect square. In
the second it has a triple root. For full details on these matters see Phil.

Travis., vol. 201, viii.]

Ex. 5. Prove that two real lines remain unaltered by the general real

linear transformation.

[If the roots are all real of course the six edges of the united tetrahedron
remain unaltered. If the roots are all imaginary, they occur in conjugate

pairs, and the united points must be of the form a ± \/ — 16, c ± /J — Id. The
lines ab and cd are real and remain unchanged.]

Art. 152. Just as in the case of the vector function, we
obtain two new functions

/o=i(/+A f.=w-n ('•>

on combining a function and its conjugate by addition and
subtraction.

The function /^ is self-conjugate and the function / is the

negative of its conjugate, or

/o=/o^ /= -/A ("•)•

as we see at once by the property of the conjugate.

Since fq is the general linear function of q, ^qfg, or Sqf^q
is the general scalar quadratic function, and

S?/o? = (m.)

represents the general quadric surface, the surface being quite

arbitrary both in shape and position, and not now referred to

its centre as in Art. 72, p. 106.

In like manner Sp/,g= (iv-)

is the general equation of a linear complex, or of a family of

lines p,'q satisfying a single condition of the first order. For if

we replace p hy p-\-tq the equation remains unchanged, for we
have generally, by the property of the conjugate (ii.),

Sqf,q=-Sqf,q=o.
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The equations SqfQa = 0, Sg/6= (v.)

represent respectively the polar plane of the point a with respect
to the quadric, and the plane containing the lines of the complex
which pass through b. The first equation may be deduced from
the result of substituting a-\-tq in the equation of the quadric,
when we find

Sa/o^+ 2^Sg/oa+ i{2s^/og = 0,

and if q is on the polar plane, the points in which the line aq
meets the quadric must be expressible by a-\-tq, a— tq, because
the polar plane is the locus of harmonic means, and the points

a, a-\-tq, q, a— tq form a harmonic range.

If Slq = is an arbitrary plane we see on comparison with (v.)

that the pole of the plane with respect to the quadric is /o~^Z,

and that the point of concourse of the lines of the complex which
lie in the plane is f,~H. It also appears that

Slf^-H = and ^mf-H = (vi.)

represent respectively the tangential equation of the quadric,

or the equation of the reciprocal quadric; and the tangential

equation of the complex (the intersection of the planes S^g = 0,

Smg = being a line of the complex), or the equation of the

reciprocal complex.
A complete account of the nature of the united points of the

functions /^ and / is furnished by the theorem of Art. 151. Since

/o is its own conjugate, each of its united points is reciprocal to

the plane containing the remaining three, or the tetrahedron of

united points is self-conjugate to the sphere of reciprocation.

We saw in Art. 67, p. 96, that it is impossible for a real self-

conjugate linear vector function to have a pair of equal roots

without having indeterminate axes, and this because a real line

cannot be perpendicular to itself. But a real self-conjugate

linear quaternion function may have two of its united points

coalesced into a single point provided the point is on the sphere

of reciprocation. The argument about real roots does not now
apply. For suppose a-\-\/— \h and a— x/— 16 to be two united

points of a self-conjugate quaternion function, the condition of

reciprocity is

S(a+ >v/^^6)(a-V^6)= Sa2+ S62= 0,

and this condition can be satisfied for real points a and h if one '

point (a) is inside and the other (6) is outside the sphere of

reciprocation Sg^ = 0.

As regards the function /, the most general form its symbolic

quartic can have is

//+</;+ii,= or (/;-s)(//-s')=0, (VII.)
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because the same quartic is satisfied by the function and by-

its conjugate (—/). Supposing the united points to be a, a\
h and h', where

f,a= s/sa, f^b= — s/sh, /,a = s/s'a\ f^h'=— s/s'h',

it is evident that a is the united point of the conjugate which

corresponds to the root — s/s, etc., and therefore by the theorem
of Art. 151 we must have

Sa2= 0, Saa'= 0, Sa?y= 0, 86^ = 0, S6a/ = 0, S66'= 0,

Sa'2= 0, SU^ = 0.

In other words the lines aa\ (ih\ a'h and hh' are generators of

the unit sphere, or aahU is a quadrilateral on the sphere. The
four lines are consequently all imaginary. By Ex. 5 of the last

article it appears that the lines ah and aV must be real; and
since these lines are reciprocal to the unit sphere, one of them
{ab) meets the sphere in two real points (a and h) and the other
meets it in two imaginary points {a' and b'). Consequently one
of the scalars {s) is positive and the other (s') is negative.

The common self-conjugate tetrahedron of two quadrics

'^^f\9.—^y ^^fi'i — ^ ^^^ ^^^ u'n^ited points off^'^fifor its vertices.

For if Slq = is the polar of a point a for both quadrics

f^a = tj^a= l or f^-^f^a = t^a, (viii.)

so that a is a united point and t^ the corresponding latent root of

fiVr If ^ is a second united point corresponding to the root t^,

Sbf-^a = t^Sbf^a= Saf^b = t^Saf^b = 0,

because the functions are self-conjugate. These relations are,

however, geometrical consequences of (viii.) and analogous
expressions.

A little care is necessary when dealing with the equations of

quadrics such as

S9.|±^^? = or Sq(f,+xf,)(f,+yf,)-^g= 0;

the second form of the equation shows that the function involved
is not self-conjugate, although /^ and f^ are self-conjugate, unless

/i is commutative with /,.

Ex. 1. In terms of vectors prove that the forms of /and/, are

fo(l+p)=e+ €o+S€oP+ <f>oP ;
/(I +p)= €-Se,p+ Y7jp

;

e being a scalar, €q, €,, r; being vectors and
<f>Q

being a self-conjugate linear

vector function.

Ex. 2. Prove that the latent quartic of the function/ is

and verify the conclusions respecting the roots and united points of/.
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Ex. 3. Prove that ^qf2fi~V29= ^

is the locus of the poles of tangent planes of the quadric ^qfiq= with
respect to the quadric Sqf2q= 0.

Ex. 4. The locus of the points of concourse of lines of the complex
^pfn= which lie in the tangent planes of the quadric SqfQq= is the
quadric Sqf/o-\f,q= 0.

Ex. 5. An arbitrary quadric and an arbitrary linear complex have a
common quadrilateral of generators.

[Tliis follows by expressing that the point of contact of a plane 8^9 =
with the quadric ^qfoq= is the same as the point of concourse of the lines

of the linear complex 8pf,q= in the plane. We have /a= ^/^a= 1*^, where t

and u are scalars, so thai fQ~\f^a= ta. There are thus four points (a) through
which pairs of the common generators pass, and these points are the united
points of /o-i/.]

Ex. 6. If /i and/2 ^^® ^^y *wo functions, prove that the latent quartics
•of /1/2 and of /2/i are identical.

(a) Show also that the latent quartic of /o~y, is of the form

[The first part follows exactly as in the case of vector functions (Art. 71) ;

the second is obtained by combining this principle with the fact that

-///o~^ is the conjugate of /o-y,.]

Ex. 7. If a, h, a' and h' are the united points of the function f^'^fj
•corresponding to the latent roots +t, —t, +t' —

1\ prove that if we take

xa+yh za'+ wh' _ x'a+y'h z'a! \-w'h'

the equations of the quadric and the linear complex take the canonical forms

^Sq/aq =xy-\-zw— 0, ^pf,<l— t{poy' — oc'y') + 1' {zw' — ^w).

Ex. 8. Prove that in any linear transformation the locus of a point
which with its derived is in perspective with a fixed point is a twisted cubic.

[If a is a fixed point, the condition requires \Jq, q, a]=0, so that q^ fq
and a are in a line. This equation may be replaced by {f+t)q= ua, or

q=u{f+t)~^a ; and this curve meets an arbitrary plane 8^5'= in the three

points determined by the cubic ^l{f+t)-^a= Q, or ^l{F+tG+ t^H-\-i:^)a= 0.'\

Ex.9. Prove that iq^fq^ Pifp)=^
represents the quadratic complex of lines connecting points and their

correspondents in the linear transformation produced by /.

(a) Prove that the reciprocal of this complex is the complex of the
conjugate /, (^^ fg^ p^ fp)= 0.

[If p and q are any two points on a line joining a point to its corre-

spondent, we have for some scalars .r, y, z, u\ the relation xp+yq=f{zp+ ivq).

The complex follows on the elimination of the scalars.

If ^lq=0 and ^mq—0 are any two planes through ^and its correspondent

fq^ we have Sf'lq= 0, Sf'mq=0, and for some scalars xt+ym=f'(zl-\-to7)i).'\

Ex. 10. The lines joining points to their correspondents which meet an
arbitrary right line a, b generate a quadric

{q,fq,a,b) = 0.
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Ex. 11. All arbitrary quadric 8^/05' = has eight generators which join

points to their correspondents in an arbitrary linear transformation.

[If the line q^ fq is a generator of the quadric, the point q is one of the
eight intersections of the three surfaces

We shall see that this is the extension of Hamilton's theory of the
*' umbilicar generatrices."]

Ex. 12. The generalized normal at a point on a surface being defined as

the line joining the point to the reciprocal of the tangent plane, prove that

the normals of the doubly infinite family of quadrics

Sq.f±^.q=0 (f=f)

compose the quadratic complex {qfqpfp)=0.

Ex. 13. The feet of the generalized normals of the doubly infinite

family which pass through a given point a are given by

where 1/ and z are scalar parameters.

[Any point on the normal to the quadric .r, 1/ at the point q may be
Aviitteu in the form

•L— q= yJ-^^ q^tq^ where w+ ^= l, iix-\-ty=z^

Ex. 14. The locus of the feet of normals of the family of quadrics

y= const, which pass through a given point is a twisted cubic.

Ex. 15. A quadric has eight generators which are also normals.
[Expressing that q=fa+ xa is a generator of the quadric Sqfq= 0, we

have Safa=0, Saf^a= 0, Saf^a=0, which give eight points a and eight

corresponding normals. See Ex. 11.]

Ex. 16. Find the locus of poles of a fixed plane with respect to the
system of quadiics /r, ^

(a) Prove that the plane Slq=0 touches one quadric if ^ is fixed, three

if y is fixed, and that if no restriction is placed on x or ;/, the locus of the
points of contact is a conic section.

[Compare generally Exs. 12, 13, 14. In general, if ^ is a point of contact,

p=J-^l with the condition ^ljAll={^ or^ f^x f+x
p= l^{y-jo){f+x)-H, or p=mi{f+xyH-{f+x)-n^.l^

(since we need not attend to the weight of p). This reduces to a quadratic

^^ '^' p=miFi-Fis . p+x{isiGi-Gm . P)+x^{isim-Bm . p\

and th*^ locus of p is a conic]

Ex. 17. The tetrahedron formed by a point and by the poles of the
tangent planes at the point to the three quadrics of a system inscribed in a
developable taken with respect to any fourth quadric of the system, is self-

conjugate with respect to this fourth quadric.
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[The equation of a system of quadrics inscribed in a developable is

^9'(/i + '^/2)~^9' = 0» this being the reciprocal of a system passing through a
common curve. If x^ y, z are the parameters of the quadrics which pass
through a point p, and if Sqf2~^q = is the fourth quadric, the poles of the
tangent planes are /2(/i 4-^/2)">, /KA+y/s)-^^, hUx^^f^'^V- But

S/2(/i +.^/2)-V ./2-^ ./2(/i +y/2)->

=Sp(/i+^/2)-y2(/i+y/2)-V

=(^-y)-iS^(/i + ^/2)-i[(/i+ ^/2)-(/i+3//2)](/i+y/2)-V,

and this vanishes since y lies on the three quadrics .r, y, z. This in particular
gives the theorem that confocal quadrics cut at right angles.]

Ex. 18. The locus of the poles of a plane Sg'a= to the same system of

quadrics is the line

5'= (/i+-^/2)«^ or [^/ia/2«]= 0;

the locus of the poles of the system of planes S</(a+ «;6)= is the ruled
quadric

q={fi+^A){(^+t^) or (^/i<¥2«)(?./i¥2a/2^)=(^./i«/i¥2^)(^/i«/2«/2^);

and the locus of the points of contact of the system of planes is the twisted
cubic,

q^f^{a+ th)^{a+ th)f2{a + th)-f2{a+ th)^{a + th)f^{a+ th).

[In reducing the scalar equation of the quadric observe that the
quaternion equation is of the form q= a-^ + xa2+ t{\ + xh^ and apply the
identity Art. 146 (i.) to eliminate the arbitrary weight of q and the scalars

X and ^.]

Ex. 19. Prove that two planes can be drawn through an arbitrary line

to be conjugate to every quadric of the system.

[If the planes Bq{a+ th)= 0, ^q{a + t'h)= are conjugate to the quadrics
S^/i~ig'= and S^/2~^5'= 0, the conditions of conjugation

S (a + th)f^ {a + t'b)= 0, S (a+ th)f2{a + t'b) =

lead on elimination of t or f to a quadratic in t which determines the two
planes in question. The case of exception arises when the line is a generator
of some quadric. The two conditions become equivalent.]

Ex. 20. Examine the particular cases of the twisted cubic locus of
Ex.18.

[When the line of intersection of the planes is a generator of one of the
quadrics, /i suppose, the locus becomes q=f^{a+ th). This shows that the
points of contact are homographic with the tangent planes Sg(a + ^6)= 0.

When the line of intersection of the planes is not a generator of some
quadric, let Sya= and S^6= be the specially selected planes of the last

example, and let ^a{f^ +uQa= 0, ^h{f-^ + vf^h= so that u and v are the
parameters of the quadrics touched by the two planes, then the equation of
the cubic becomes

q= {fi + uf2){'^+ th)^af2a+ {f^ + vf2){a+ tb)mhfjb.

The cubic is plane if {fiaf2af-J)f2b)= 0. (See Ex. 9.)

The cubic degrades into a conic if (fi + vf2)b=-0, or (fi + uf2)a= 0, that is,

if either of the planes is a united plane of /g'^/^.]

Ex. 21. Determine the quadrics of the system S^(/i + ^/2)~^g'= touched
by an arbitrary line.
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[Taking the line to be the intersection of the planes Sqa=0, Sqh=0
of the last example, the condition of contact is most simply obtained by
expressing that the reciprocal line q= a+ th touches the reciprocal quadric
S? (/i + .2/2) ^= 0. Thus we find

^a{f^ + xf^)a^h{f,+xf^)h - (Sa(f, + a;f,)by= 0,

or simply (x — u){x — v)= 0,

so that the line touches the quadrics touched by the planes.]

Ex. 22. Show that the equation of the tangent cone from the extremity
of the vector p to the quadric

may be written in the form

^t{6i+xO<^~^t= 0, where ^„A.= <^„A + e„pSpA - e„S/)A. - pSe„A

in the notation of Ex. 1, n being equal to 1 or 2.

[The condition that the line of intersection of the planes Sag'= 0, 865'=
should touch the quadric Sqf'~^q=0 may by the last example be written

in the form

(e+ 2S€a+ Sa(^a)(e+ 2S€/3+ S^<^/5)-(e+ Se(a+ y8) + Sa<^/3)2= 0,

where a= l + a, 6= 1 + ^. This reduces to

and if the line of intersection of the planes is parallel to r and if p is the
vector to a point on it, we may take Yal3=T, f3~a= —Ypr (see p. 40,

Ex. 4), or l3-a= -YpVaf3- Substituting this last expression for /3-a,
we find that the condition becomes

SVa/?{ V(/)a<^/? - Ycf>a(€Spf3+ pSeft) - Y^eSpa+ pSea) </>/?

+ eYcf>apSpf3+ eYp<fif3Spa - Yep (SeaS/o/3 - SeygSpa) }=

or SVa^V (<^a - eSpa - pSea + epSpa) {c{>/3 - eSpfS - pSc^+ epSpfi)= 0.

In this transformation we make use of the fact that

SY€Yaf^cf>YpYaf3= SYpYaf^cf^YeYafS

in order to have the function in the last expression self-conjugate. If then

ek= (f)X- eSAp - pSAe+ eSAp,

the condition becomes St^"^t= 0, and putting f=f\-\-xf^^ and therefore

^=^i + ^^2) ^'^ result required is obtained.]

Ex. 23. If p is any point
;
jo^, ^2* Vz ^^ reciprocals of the tangent planes

to the three confocals (parameters t^^ ^2» ^3) which pass through the point

;

show that the tangent cone to any other confocal (parameter t) is

C 6t V vo V '^ fro

where any point q is expressed in the form xp+ XiPi-\- X2P2+ x^p^.

[The condition that the line p + uq should touch the confocal t is

^. Sq(f+t)-'qSp{f-{-t)-'p-(Sq{f+t)-^py= 0, or Sqkq=
if k is me linear function defined by

^=(/+ ty'q ^p{f+ t)-'p - (/+ tr^p^q(/+ tr^p.

Substituting in turn p, p^ { = {f+ti)~^p\ p^-, and JO3 for q, we find hp=0,

hpi={t-t,)-^p^Sp{f+t)-^p, etc.,
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because we have

Kf+ h)~'p= (/+ t)-\f+ h)-^p^p{f+ t)-'p - (/+ h)p^p{f+ hY^{f+ ty^p },

which reduces to

A(/+ h)-^p= {t- h)-'(/+ h)-'P ^P{f+ t)-'P

since Sp(/+ t)-^p - ^p{f+ h)-'p= (h - OSp(/+ ^^1)-^/+0>- *

The equation Sqhq^O reduces to the required form since SpiP2=^, etc.]

Ex. 24. Find the equation of the tangent line developable of the

quadrics S .q^= 0, ^qfq= 0.

[If p is the point of contact of a tangent line pq to the common curve,

the four conditions S.p'^ = 0, Spq= 0, Spfp= 0, Spfq= 0, show that

(P,9,fP,f9)= ^^ or that {f+^)p = (f+y)q,

where x and y are two scalars. Substituting for p in the conditions of

contact, we find four relations in q, x and y, which are easily seen to be

equivalent to three. The second condition gives J. = Sg'(/+.r)~^(/+^)g'=0
;

and because the first and third combine into ^p{f+y)p= 0, they give

^q{f+^v)-\f+y)q=0, or ^S(?(/+^)-i(/4-^)?= 0.

Again the second and fourth give

S^(/+^)g= 0, or B=^q{f+y)q= Q.

To eliminate x and y we have therefore to equate to zero the discriminant of

A with respect to x and to employ the condition B=0. On expansion A
becomes Sq{F+xG+ x^ff+a^){f-i-y)q= 0,

and as J5=0, this reduces to the quadratic

Sq{F+xG+x^H)(f+y)q= 0,

and the discriminant equated to zero gives

4SqII{f+y)qSqF{f+y)q-{SqG(f+y)qy= 0.

Putting for y its value in terms of q the required equation is obtained.]

Ex. 25. A plane is drawn through the line ab, and through the line cd
the plane is drawn which is conjugate to this with respect to the quadric

Sqfq— 0. The locus of the intersection of the plane is

S[qab]f-^[qcd]=--0.

[If g' is a point on the intersection, [qab] and [qcd] are the symbols of the

two planes. The equation may be transformed by Ex. 5, Art. 146.]

Art. 153. A linear quaternion function has in general sixteen

square roots quite analogous to the square roots of a linear

vector function. A function and its square roots have the same
united points, and the latent roots of the derived functions are

the square roots of those of the original, there being sixteen

•different sets according to the choice of signs. (Compare p. 99.)

In analogy with the reduction of a linear vector function to

the product of a conical rotator and of a self-conjugate function,

we may write

fP=fsftP, fP^ftJsP, where /,=// and ftft^^, ..-(l.)
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since if we take f^ to be a square root of the product ff we must
have /,// = 1 because

and thus we have

/.=(//')*. A=(ffTV ("•)

It appears on counting the constants that /< is not a conical

rotator, there being sixteen constants in / and only ten in the

self-conjugate function f], so that there must be six in /^. Con-
sidered geometrically the function ft converts the unit sphere

into itself and leaves unchanged conditions of conjugation with
respect to that sphere, because

Sfafth = if Sab = 0.

Farther, because ff=ff-'^ transformation of symbols of planes

effected by the function f is identical with that of points

(Art. 149).

To study the nature of a function
ff.

which satisfies the relation

f,f:=^=.f;f. or /,=/;-! or /;=/.-^ (III.)

we shall endeavour to reduce the function to the form

ft=fufr, where /,=//, /, = r( )r-^, (iv.)

that is to the product of a self-conjugate function and a rotator.

First we notice that if a function/,., which satisfies the condition

/,.//=l, converts a scalar into a scalar, it is a conical rotator,

affected it may be with a minus sign. For if

/Xl)=l =//(!),

we have for all vectors p,

s/;p=s«/-;(i)=Sp=o.

Thus frp is a vector, and the mutual inclinations of vectors and
their lengths remain unchanged after operation by/,, because

^frPfrp = ^pp'

To effect the reduction (iv.), we notice that we must have

//=1- /,(1)=/.(1)> (V.)

because /,//=/„/.///„=A^ and /,(l)=/„/.(l)=A(t).

Let us now for the sake of symmetry introduce two quaternions

a and b defined by the relations

l+/,(l)= a= l+/„(l), 1-/,(1)= 6 = 1-/„(1) (VI.)

Theie quaternions are known when the function / is given,

and in virtue of (v.),

fya = a, fj)=—b, Sa6 = 0, (vii.)

so that a and 6 are united points of the function /„.
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Take any point c conjugate to the line ah, so that Sac= 0,

She = ; and take the point d conjugate to the plane ahc so that

Sda= 0, Sdh — 0, Sdc = 0. Then we may assume

fuC = c, fj= -d, (VIII.)

and it is evident that all conditions (Art. 152, p. 276) are satisfied

for the self-conjugation of the function f^, and that fnV—V^
where p is any point whatever. The function j\ is determined

by the four conditions (vii.) and (viii.), and the rotator /. is

given by /„~yi or by its equivalent /„/. It will be noticed that

there is an infinite number of ways in which this reduction may
be made, for the point c may be any point whatever on the

reciprocal of the line ah. Also the function /„ has two line loci

of united pointst—he line ac and the reciprocal line hd.

Thus we can in an infinite variety of ways reduce an arbitrary

function / to the form

• /=/,/„/. where /. = (//)*, /„^ = 1, /.= r( )_r-i (ix.)

As a simple example, consider the transformations which

convert one quadric into another, or which change

Sg/ig = into 8^/3^= 0, where _p=/g (x.)

We have

S.=fM, whence 1=/,'/, \i j=U^f4^\ (xi.)

and the function /, is quite arbitrary subject to the condition

As another example we propose to show that the intersection

of two quadrics is expressible in the form

g =(/+OV (xii.)

where / is a linear function, t a parameter and a a constant

quaternion.

If this curve lies on the quadric Sg/^g = 0, the relation

S(/+ tfaf,{f+tfa= Sa(/'+ oVi(/+ 0*" =

must be identically satisfied for all values of t. Now

fhf+ oVi"* = (/iV/r*+ 0*. /rV'+ oVi* = (/rV'/i*+ «)*,(xin.)

as appears by squaring both members of each equation, so that

the condition may be written

This becomes rational in t if the square roots involving t are

identical, that is if

/rV'/i*=/iV/r* or fj\=fj or if f=A-'U (XIV.)

where f^ is a self-conjugate function, the condition now becoming

S^(/2+ yi)^='^' ^^ Sa/2a = and Sa/i(X= 0.
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Finally,

q = (fi-%+ t)^a, where Saf^a = 0, Saf^a= 0, SafJ'^-^f^a^OixY.)

is the curve of intersection of the two quadrics ^qfiq = 0,

8g/2g' = 0, because if we ^^^ fi~^f2=f<f^ • f^fi'^fi^ ^^^ notice that

/a/i'^g is a self-conjugate function, the conditions that the curve
should lie on the second quadric are seen to be the second and
third of the conditions (xv.). Thus a is one of the points of

intersection of three known quadrics.

Ex. 1. Investigate the transformation of one quadric into another by
first transforming to the unit sphere, then transforming the sphere into
itself, and finally transforming the sphere into the second quadric.

\li^qf^q= 0, Sqf2q= are the two quadrics, the steps are

where /«//= !.]

Ex. 2. Under what conditions can a function / be formed so that for all

points q and q' we shall have

'^PfiP'^^lAl'i where p—fq and p' =fq' ?

(a) Find the function / when the conditions are satisfied.

[We must have ff\f=fi with the implied relation ffxf=fi connecting
the conjugates of these functions. Hence

and therefore the latent roots of the function /g ^g' niust be identical with
those of /i~Vi'. For if (Xg? ^2> ^2j ^2 ^^^ ^^^ united points of f^^f{ and if

t^^ ^2) h ^^d t^ are the corresponding latent roots we have (see p. 100)

/rVi' 'fcii= hf^2, etc.

Further if ^, ^, z and w are certain scalars and if a^, 61, c^, d^ are the
united points of /i~Vi', ^^ must have fa2=xa^^ /^2=y^n /<?2='^<^i) fd^= wd^

;

and because ff\f=fi we have v?n^= n^, where w, n^ and n^ are the fourth
invariants of/, /i and /2. But •

n{a^<f^d,^=xyzw {GL^^c-^d^^ or {a.^^^d.^ sfn^=xyzw {a^^c-^d^ sfn^ ,

and subject to this condition .r, 3/, z and lo are arbitrary, and the function /
involves these arbitrary constants and is given by

fq . {a^h^^^= - 2^ai(V2<^25')-]

Ex. 3. Under what conditions can two quadrics Sqfiq= 0, S)qf2q=0he
transformed into two others Sqf2q = 0, Sqf^q= 0'i

[This is nearly the same as the last example. We must have f'fif=uf3,
ffif=vfi^^ where u and v are scalars, and hence /~y2~yi/= ^v~V4~V3i so that
the latent roots of /2~y"i and of f/^^f^ must be proportional. In the same
way we obtain the conditions that a linear complex and a quadric should be
simultaneously converted into a linear complex and a quadric]

Ex, 4. A twisted cubic q= {ahcd\t^ \f may be converted into another

q'={a'h'G'd'\if^ Vf with arbitrary correspondence of points.

[Assuming ^ =—r. >, where w, v, u' and v' are arbitrary scalars, we

establish a homography connecting the points on one cubic with those on
the other, and if we equate corresponding powers of t in the relation

/. {abcd\t, lf={a'h'c'd'^ut+ v, u't+ v')

we have four relations which determine the function /.]



286 PROJECTIVE GEOMETRY. [chap. xvii.

Ex. 5. Prove that

q==^/{{f+'V)if+y){f+z)].e, where Se2= Se/e= Se/2e=0,

represents a confocal of a generalized system when two of the parameters
x^ ?/, z vary ; the intersection of two confocals when only one parameter
varies ; and a point common to the three confocals corresponding to given
values of the parameters. (See p. 124.)

Ex. 6. The generalized confocals are inscribed to the developable of
which /^ \4q^{f+xYe
is the cuspidal edge.

[The line of the developable corresponding to x is q={f+u){f-\-x)^e',

the osculating plane is q= {f+u){f+v){f-\-x)~^e', the symbol of this plane

is [{f+x)-h, f{f+xyh, /2(/+^)-i4 or {f+xf[e, fe, fel or simply

p— {f+xye. This plane touches every confocal.]

Ex. -7. Eight generators of the circumscribing developable are generators
of an arbitrary quadric of the confocal system.

[The line (/+w)(/+^Fe is a generator of ^q{f+x)-^q= (), and this is one
of eight corresponding to the eight values of e deduced from the conditions
of Ex. 5.]

Ex. 8. Eight rays of the complex of lines joining points to their
correspondents in an arbitrary linear transformation are generators of an
arbitrary quadric.

[The equation of a ray of the complex is q = {f-{-u)a, where a is arbitrary.
This is a generator of the quadric Sqfiq=0 if Sqf-^a= 0, Sa(/'/i+/i/)a= 0,

Saff^fa= 0. This is the generalization of Hamilton's theory of the umbilical
generatrices.]

Ex. 9. The reciprocal of the developable generated by the tangents to
the curve

q= {f+tTci is p= {f'+ tf-^b, where h= [aja,fa\
and where m is a given scalar.

Ex. 10. The family of cxxvyq^ q= if+tya includes the right line, the
conic, the twisted cubic, the quartic intersection of two quadrics, the ex-
cubo quartic and the cuspidal edge of the developable "circumscribed to two
quadrics ; the corresponding values of m are 1, 2, - 1 or +3, ^, 4 and f,

Ex. 11. The centres of generalized curvature at a point on the quadric
^q{f-\-x)-'^q= Q are

c=-^^q and «'=^?,

where y and z are the parameters of the confocals which pass through the
point q.

[The point e= (f+u)(f+x)-^q is situated on the generalized normal at q
(Ex. 12, p. 279), and if this point remains stationary, that is if it is the
point of intersection of consecutive normals,

dc=cdv= (J+u)(f-\-x)-^qdv= {f+u)(f+x)-'^dq+ (f+x)-^qdu,

since as c is stationary do and c must represent the same point so that
dc=cdv, where dv is some small scalar. This condition may be replaced by
cl9'= (/+^)~H/+^)2'dy, where w is a scalar, and operating by S(if+x)-^q, we
find almost exactly as in Art 82, Ex. 4, p. 122, the required result.]
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Ex. 12. The surface of centi-es of the quadric x is represented by

Ex. 13. The differential equation of right lines on the surface

d?/ dz
IS ^

-t =
'Jn{y) '>Jn{z)

where n{y) is the fourth invariant of /+?/.

[The differential oiq= ^{ (f+ a;)(J+y)(f+ z)\e is

^ dq=h{^^+^)-s/{{f+^)(f+y){f+z)}e;

and the differential equation of right lines on the surface is obtained by
equating to zero

Sd^(/+^)-id^=iS.(^+^)'. (f+y)(f+z)e

=i(d,^S.g-% + d.^S.^.)

= i(z-y).{dy^Se(f+y)--^e-dz^Se{f+z)-^e}.

Now Se(f+y)-h= n(y)-'^Se(F+yG+y^B+y^)e= n{y)-^SeFe in virtue of
the conditions satisfied by e.]

Ex. 14. Tlie differential equation of generalized geodesies on the
surface is

^ n{y){y — w) ^ n{z){z — w)

where -m; is a constant of integration.

[A generalized geodesic is a curve whose osculating plane contains the
pole of the tangent plane with respect to the quadric of reciprocation

(S.q^= 0). Thus {(f+^)~^q, q, dq, d^q)= is the differential equation of a
geodesic in terms of q and of its deriveds.

Writing this equation in the form {f+ xy^q + tq + udq +vd^q= 0, where
t, u and V are scalars, operating by &q, Sdq, S(f+a:)~^q and S(f+x)~^dq, and
observing that Sdq{f-{-^)~^dq + Sq(f+x)~^d^q= 0, we deduce

Sg(/+^)-% Sdq(f+x)-^d^q S . q^Sdqd^q - SqdqSqd^q

Sq(/+ x)-^q
"^

Sd^ (/+ x)-'dq S . g^S . d^^ _ §^^^2 - ^•

This immediately integrates, and we find

Sq(f+x)-^qSdq(f+a;)-^dq= s(S . q^S . dq'- - Sqdq^),

where s is a scalar constant. By the last example we have

Sdq(f+a;)-^dq= i{z-y){n(^)-^dy^ - n(z)-^dz^)SeFe,

and similarly

Sq(f,^^)-^q= (y-x)(z-a:)n(a^)-^SeFe; S.q^= Sefe= -SeFe ; Sqdq^O,

S . dq^*=i{x-y){z-y) . n(y)-Kdy^ . SeFe+ l(a^-z){y-z) . n(z)-KdzK SeFe.

Collecting these results and putting x'+sn(a;)= w, the required equation
is obtained.] ^
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Art. 154. We shall now give a few examples relating to in-

variants of linear transformation and of quadric surfaces, and
shall explain their geometrical import.*

By Art. 150 (v.), p. 273, the relation

{{f'-t)a,{f-t)h,{f-t)c,{f-t)d)

= (abcd)(n- n't+ n'V - n''V+ ^*) .
.-. (i.)

is an identity for all scalars t and all quaternions a, 6, c and d.

In this sense n, Ji , n' and n'" are invariants, and every
relation connecting them implies some peculiarity in the nature
of the transformation effected by /. But there is a wider sense

in which these four scalars are invariants. If n^ and n^ are the

fourth invariants of two arbitrary functions /^ ^^^ fv ^^
relation

{{fJA-tAh)a, {fJh-tfj,)h, {fJU-tfj,)c, {fJU-ti\U)d)\

= {abcd)n^n^(n-n't-^n''t^-n'''t^+ t% f "^

is evidently true since (fiP, fiq, /{i^, /i<^)
=

'^i(i59"^'^)> where _p, q, r
and s are any quaternions. Thus any relation implying a

peculiarity of the function / and depending on its four scalar

invariants, implies also a corresponding peculiarity in the mutual
relations of the functions /1//2 and f-j^, that is, in the relations

of any pair of functions that can be reduced to the forms /1//2
a^nd/i/g. (See p. 98 and Ex. 8, p. 101.)

Ex. 1. If the function / transforms any tetrahedron abed into another
a'b'c'd' having its vertices on the faces of the original, the invariant n"
vanishes and an infinite number of tetrahedra possess the property. The
converse is also true.

[The conditions are {a'hcd)= 0, (ab'cd)= 0, (abc'd) = 0, {abcd')= 0, and
because a'=fa, etc., wa find on addition that n"'= 0. Let a, b and c be any
arbitrary points, and let d be determined from the first three conditions.

Then we have n"'{abcd)= (abcd'\ so that if n"'=0, the point /<i will lie on
the face a6c. More generally when 72.'"= there exists an infinite number
of tetrahedra so that the tetrahedra derived from any one by the operation
of the functions fiff2 and /^/g are related in the manner described.

If n'=0, the faces of the derived tetrahedra contain the vertices of the

original.]

Ex. 2. The invariant n'"^ - 2n" vanishes whenever a tetrahedron abed is

so related to its correspondent in the transformation, that the tetrahedron
transformed from the correspondent has its vertices on the original.

[The sum of the squares of the latent roots of / is zero, or the first

invariant of /^ vanishes.]

Ex. 3. When the invariant

vanishes it is possible to determine an infinite number of tetrahedra (abed)

*See Fhil. Trans. y vol. 201, "Quaternions and Projective Geometry."
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and their deriveds {a'b'c'd') so that a tetrahedron can be inscribed to abed
and circumscribed to a'b'c'd'.

[The sum of the square roots of the latent roots of / is zero, or the first

invariant of one of its square roots /^ vanishes.]

Ex. 4. If an infinite number of tetrahedra can be inscribed to one
quadric surface and circumscribed to another, find the invariant relation.

[Let abed be the four vertices of a tetrahedron inscribed to the quadric

Sg'/i^'^O, and let the faces touch ^gf2^= at the points a'b'c'd'. If cC =fa^
etc., we have four equations of inscription Sa/ja= 0, etc. ; twelve equations of

conjugation, Sa'/2^= 0, Wf^a=-^^ etc., or ^aff^b^O^ Saf2fb= 0, etc. ; and four

equations of contact Sa'f^a'^O, or Sa/'f2fa=^0. The equations of conjugation

require /o/ to be self-conjugate, or f^f^ffi \ and the equations of contact

may therefore be replaced by ^af2f^a= 0, etc. Hence if the first invariant

of /is zero and '^^ fif=ffi', it is possible to inscribe in the quadric ^gfiPg — ^
and to circumscribe to Sg'/g^'^^ ^^ infinite number of tetrahedra. For when
we assume two of the vertices a and 6, we have to determine c and d to satisfy

(/a, 6, c, c^)= 0, (a,/6, c, c^)= 0, (a, 6,/c, c/)= 0, ^ef^fc^O and ^df^pd^O.
The first three give d in terms of c, and on substitution in the fifth we have
two equations in c, any solution of which will be applicable.

The quadrics 8^/2/^3'= and Sqf2q= possess therefore the required

property, and so do the quadrics ^ofiq= and ^qf2q= 0, if it is possible to

find a function /for which /2/^= /i,/2/=//2 and n"'= 0. It is easy to see

that the conditions are satisfied if the invariant of the last example vanishes

for the function /g'^j.]

Ex. 5. If a tetrahedron circumscribed to Sqf2q= is self-conjugate to

82-/35' = 0, the first invariant of the function /2~y3 vanishes.

[This is virtually proved in the last example, the function /g being /g/.]

Ex. 6. When the invariant n" vanishes, it is possible to determine an
infinite number of tetrahedra (abed) and their deriveds {a'b'c'd'\ so that each

edge {ab) of one of the tetrahedra intersects the opposite edge {c'd') of the

correspondent.

[The invariant is (abed)n"= ^{abc'd'\ and it manifestly vanishes if opposite

edges intersect, that is if each of the six terms {abed') vanishes. Conversely

if w"= 0, we may arbitrarily assume two of the points a and b. We have then

to determine c and d to satisfy /ve conditions, {abc'd')=0, etc. Solving for d
(Art. 146, Ex. 3, p. 269) from three of these and substituting in the remaining

two, we get two equations quartic in c, and the point e lies on part of the

curve of intersection of the quartic surfaces represented by these equations.]

Ex. 7. Find the locus of intersection of generators of a quadric which
are the sides of a triangle self-conjugate to another quadric.

[If the quadrics are Sqfiq = 0, ^qf^q^O, we may first reduce the second

quadric to the sphere ^q'^= and the first to 8^/0-= where /=/2~Vi/2 •

If q is the intersection of the generators and a and b the remaining vertices

of the triangle, the conditions are

8^/^= 8y/a= 8a/a= ^qfb= Sbfb= 0, Saq = Sbq= Sab= 0.

Now for the first invariant of/ we have

. •, n"'(a, 6, q,fq)= {fa, 6, q,fq) + (a,fb, q,fq)+ {a, 6, qyfq),

and the conditions require (/a, 6, qifq) = and {a,fb, q,fq) = 0, because the

four constituents of the first are reciprocal to a, while those of the second are

reciprocal to b. Also [a, 6, ^l^-^A? and therefore the locus is

n"'&qfq= Sqfq.]
J.Q. T
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Ex. 8. Three intersecting edges of a tetrahedron self-conjugate to one

quadric touch another. Find the locus of the intersection.

[If the tetrahedron qahc is self-conjugate to Sg'2= 0, we have wq= \abc\

xa= {hcq\ yh= \caq\ zc= [abq]; and if the line qa touches Sqfq = 0, the

relation SqfqSafa-Sqfa^= must be satisfied. This condition of contact

may be written in the form 8qfq{fa, b, c, q) — 8fqo('{fq, b, c, q)= 0, and there

are two similar conditions of contact obtained from this by cyclical inter-

change of a, b and c. Writing down the identical relation connecting

a, 6, c, q and /a, and utilizing the conditions, we find

SAi/^K ^ ^5 q)-q{a', ^ c,fq)}-Sqfq{7i"'(a, b, c, q)-{a, b, c,fq)}= ;

and this reduces to 8qf^q-n"'Sqfq= 0, when the factor S.^^ is discarded,qrq-
?] = wq.remembering that [abc] = wq.]

Ex. 9. Each of three planes Bqa= 0, Sqb=0, Sqc^O, mutually conjugate

to Sq^= 0, touches one of the family of confocals Sq{f+u)~^q^O. Find the

locus of the intersection of the planes.

[The points q, a, b, c satisfy the conditions of the last example which do
not depend on the function/. The conditions of contact are of the form

uSa^+ Safa= or u{abcq)+ (fabcq) = ;

and hence (u+ v+ w-{- n'") Sq^ - Sqfq=

is the locus required.]

Ex. 10. The edge ab of a tetrahedron self-conjugate to Sg2= touches

the quadric Sqfq = 0. The condition of contact may be reduced to

{fafbcd)= 0,

and the invariant n" vanishes if all the edges touch the quadric.

[By Ex. 6, Art. 146 and (vi.), and Ex. 1, Art. 145, this follows without
trouble.]

Ex. 11. If the functions fi, /g, /g, etc., are transformed by multiplying
them by an arbitrary function f^ and into an arbitrary function fy, the

functions fxf'f^fzi f\f^r^fzfC^fb'> ^^^-5 undergo the same transformation and
may be said to be covariant with the original functions for this type of

transformation.

{a) The function /^gg, defined as the coefficient of ^^i^g^g in the identity

-^1^2^3/l23[«^c] = P^l/l'"'«, ^hfl'^h, '2tJ^-^cl

where ^i, t^, t^, etc., are arbitrary scalars, is (to a scalar factor) covariant

with the original functions.

(b) Examine the nature of the transformations the inverse and the

conjugate functions undergo simultaneously with the original functions, and
find the condition that self-conjugate properties may be preserved.

Art. 155. Several important geometrical and numerical
relations may be deduced from the identity

+ P^(P5PlP2Ps)+ P5i2hP2pBP4)='^^ (!•)

in which pn is a rational and integi'al homogeneous quaternion
function of q of order m^.
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The scalar equations

iP5PlP2Pz) = ^' (PiP2PzP4) = ^ ("•)

represent two surfaces of orders ^^^m^— 7n^ and S^^m^— mg
respectively, and any point on their intersection satisfies the

quaternion equation

[PiP2Ps\ = ^^ • 0"-)

or else the three scalar equations

iP2P3P4P5)==^^ (2hP4P5Pl)= ^^ (P4P5PlP2)= ^- '"(iV.)

Hence we see that the curve of intersection of the surfaces (ti.)

breaks up into two parts, one of which is represented by (m.),

while the other—the complementary curve—is common to the
five surfaces (ii.) and (iv.).

Now the order of the curve (ill.) must be a symmetric function

of m^, rti^ and m^, and that of the complementary curve must be
a symmetric function of the five orders m„. The sum of the
orders is equal to the product of the orders of the surfaces (ii.),

that is, to

and accordingly the order of the curve (ill.) and that of the

complementary curve are respectively

m^<,^ — ^^m^-\'^^m{m^ and mc= Y^^m{nfi^ (v.)

Again the points common to the three surfaces (iv.) must
either lie on the surfaces (ii.) or else must satisfy the equation

(i^4P5) = 0, (VI.)

which requires P4= 'M<P5, where i6 is a scalar. In the former case

the points lie on the complementary curve. When three surfaces

have no common curve the number of their points of intersection

is the product of their order ; when they have a common curve,

that curve counts for a definite number of points of intersection,

and there are in general other points of intersection not on the

curve.* Now the surfaces (iv.), if they had no common curve,

would intersect in

(S/m^ - mi)(2i^mi—m^{^^m^— m^
= '2{'m^^m{ni^^— ^-^m{nfi,^m^+ (m^

+

m^^^m^m^
4-m/

+

m^m^+n\m^+ m^^

common points, the number being transformed so as to exhibit it

as a fil^ction of symmetric functions of the five orders and of

symmetric functions of m^ and m^. The number of points

satisfying (vi.) must be a symmetric function of m^ and m^

* Salmon, Three Dimensions, Art. 355.
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alone. The number of points of intersection of the surfaces (iv.)

absorbed by the complementary curve is {Three Dimensions,
Art. 355) a linear function of the order and rank of the curve

—

and the order and rank must both be symmetric functions of

the five orders. Hence the number of solutions of (vi.) is

^45=m/-fm/m5+m4m/+m/ ^....(vii.)

In the next place, in order to find the rank and the number of

apparent double points of the curve (m.), we notice that it meets

the surface {]P4^Pr,'Pi'P2) = ^ in '^123(^/^^1" '''^3) points. These

points, as appears from (i.), are either solutions of (^1^2) — ^ ^^

points on the complementary curve. The number of intersections

of (ill.) with the complementary curve is therefore by (vii.)

^123= ^mCSi'w-'i- ^3)- ^12

= ^1232/^1— 2i^m/— ^^Tni^m^— rn^ni^m^ (^ui-)

Employing the relation r-\-t — m{ijL-\-v—V) of Salmon's Three

Dimensions, Art. 346, connecting the rank r and the number of

intersections ^ of a curve of order m and its complementary on
two surfaces of orders /x and v, we find for the surfaces (11.) of

orders ^^r)%-^— m^ and l^^m^ — m^ that the rank of the curve

(I"-) is r,^^^^ _j5^^^+^^^(22/m,-m,-7>i,-2),

which reduces by (viii.) to I

^123= '^123(^/^1— 2)+^^m^+ H^^m^^m ^+ ra^m^m^ I

= on^m^m^— Sll-^^m-^'I.^^m^m^+ 2 (E^^m^f

-2((E>,)2~2i3m,m2) (ix.)

In the next place, to find the number (h-^2s) ^^ apparent double
points of the curve (m.), we have (Three Dimensions, Art. 346),

^^123= 4^^23(^123- l)-i'^m (^O

The rank (r^) of the complementary curve is determined by

Tc = -
1^123+ Wc(22/mi- m^- m^- 2), I

and this may be reduced to

re= ll-^^m^l^j^m{m2+ E^^m^ni^m^— 211-^^m^m2 , (xi.)

and the number of apparent double points is

hc= imc(mc-l)- ire.

We may denote the complementary curve by the symbol

which is intended to denote that the points of the curve satisfy

every equation obtained by omitting one symbol. Similarly,

i(iPiP2PzP,P5Pe)))= ^ (xni.)

1



ART. 156.] ORDER AND RANK OF CURVES. 293

may be taken to denote the points which satisfy the surfaces
obtained by omitting two symbols. These points lie on the
curve (xii.) and also on the surface (PiPil^sPe)^^- But the
intersection of the curve and the surface includes the points t^^^

on the curve [PiP2P3\ — ^' Omitting these, the number of

points is
mc(miH-m2+m3+ma)-^i23 = 2i^^i'^2^3 (^i^-)

Ex. 1. The curve [q,fq, «] = 0, where / is a linear function, is a cubic ; ita

rank is 4 and the number of its apparent double points is 1.

Ex. 2. The curve [fiq,f2q,.f'sq] = is a sextic of rank 16 and with 7
apparent double points. It is ibhe locus of points that can be destroyed by
functions of the system ^1/1 + ^2/2+ ^3/35 and the locus of united points of
functions of the system . /_i_/ /i* -^

^l./l + ^2./2+*3/3

^h/l+^*2/2+ ^3/3'

where t and u are scalars.

Ex. 3. The surface (f^q, f^q, f\q, f^q)=

is the locus of united points of a family of linear functions.

(a) When the functions are self-conjugate, it is the Jacobian of four
quadrics.

Ex.4. The curve ((Aq, f2^^/39, Aq, f59)) ^^^

is of the tenth order and its rank is 40.

(a) The Jacobians of sets of four out of five given quadrics have a common
curve, and the Jacobians of sets of four out of six quadrics have twenty
common points.

Art. 156. If Q is any homogeneous and scalar function of q
of order ni, but not necessarily rational or integral, the equation

Q=o (I.)

represents a surface.

We shall write the differential of the function Q in the form

dQ = mSpdq, (ii.)

where p is a homogeneous function of q of order m — 1. By
Euler's theorem concerning homogeneous functions, we see by
("•) ^^^^ Q = Spq = P, '

(III.)

where P is the function of p into which Q transforms when q
expressed as a fraction of p is substituted in Q, for we may
regard g as a function of p since j) is a determinate function of q.

Again we shall write generally for the differential of 2^,

-'* dp= (m-l)/,dg, (iv.)

where /^dg is a linear function of dg and where the constituents

of fq involve q in the order m— 2 ; and by Euler's theorem we
^''^^ P=M (V.)
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This function /^ is self-conjugate, as we have shown in a more
general case (Art. 60 (iv.), p. 79).

Now if we differentiate (in.) we have

dQ=-Spdq+ Sqdp = dP, (vi.)

and on comparison with (ii.) we see that

dP = nSqdp, where (7i-l)(m-l) = l, .(vii.)

and it is easy to verify that n is the order in which p is involved

in p.

We shall also write generally for the differential of q expressed

as a function of ^, d^ = (7i-l)/,dp, (viii.)

and the function fp is also self-conjugate and involves p in the

order n— 2 in its constitution. Thus for any differential by (iv.)

and (viii.) we have

dp = (m-l)fr,dq = {m-l)(n-l)fjp.dp^fjp.dp ...(ix.)

by (vii.), and accordingly

fjp='^=fpf,> (X.)

or one function produces on an arbitrary quaternion the same
effect as the reciprocal of the other. In particular, applying

Euler's theorem to (viii.) as we have already applied it to (iv.),

we obtain the relations

V=f<i(l=fv-% <l=^fvP=f<i~^V (XI.)

When dg instead of being perfectly arbitrary satisfies

dQ= 0, or Spdg = where Q = 0, (xii.)

dq represents some point in the tangent plane at q, and p is the

symbol of the tangent plane or the reciprocal of the plane with
respect to the auxiliary quadric. The equation P = is that

of the reciprocal of the surface. The relations of reciprocity are

clearly exhibited by the equations (compare (ii.), (in.) and (vi.))

S^dg = 0, Sgdp= 0, dP= 0, P = if dQ = 0, Q= 0;(xiii.)

-Sdpdq= Spd^q = ^qdY d^P= if also d2Q= (xiv.)

Consecutive tangent planes at q and q-\-dq intersect in the

line common to the planes

S^= 0, Sd^r= 0, (XV.)

r being the current point, and if q+ d'q is a consecutive point on
this edge we have the group of relations

Sj9g = 0, S^dg = 0, Spd'g = 0, Sdy^dg^O,

Sgd/? = 0, Sgd> = 0, Sd>dg = 0, (xvi.)
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remembering that in general Sdpd'^ = Sd'pdq because fg is self-

conjugate. Hence to conjugate "* tangents (qdq and qd'q) on the
surface correspond conjugate tangents on the reciprocal, and the
reciprocal of a tangent to the surface is the correspondent of

the conjugate tangent, for we have S(p-\-xd'p)(q+ ydq) = 0.

The differential equation of the asymptotic lines is

Sdpdq = 0, (xvil.)

these lines being their own conjugates.

The differential equation of lines of curv^ature is

{pqdpdq)= 0, (XVIII.)

for this is the condition that consecutive generalized normals
should intersect. If c is a centre of curvature, we have

c= q+ tp, dc = (l+ tfq)dq+pdt= (q-\-tp)du, (xix.)

where du and d^ are some small scalars. (Compare Art. 153,

Ex. 11.) Hence sls p=fqq we obtain the relation

qdu-dq = (fg--'+ t)-^qdt;

and operating by Sfqq we get

Sg/,(/,-'+ 0-^? = or S3(/,->+0-'2 = 0, (xx.)

since /5(/rH0-' = <-MA-(/r'+ 0-'} and Sqf,q= 0.

The theory of generalized curvature is thus connected with
that of the generalized confocals. The scalar t is the parameter
of one of the confocals Sr(/p+ ^)~V= which pass through q,

r being the current variable. The confocal ^ = is SrfqV= 0.

The roots of this equation in t determine the centres of cur-

vature, and because in terms of ^(=/g"^) it becomes

Sq(Fp+ tGp+ f-Ep-i-t^)q = or Sq(Gp-{-r'Hp-^t^)q = (xxi.)

(since Fp = npfp~'^ = npfg and Sqfqq = 0) after discarding the

factor f, it reduces to a quadratic and gives two values of t.

Ex. 1. The points having common polar planes with respect to two
surfaces satisfy the equation

{PlP2)= ^'^

the points having collinear polar planes with respect to three surfaces lie on

the points having concurrent polar planes with respect to four surfaces

generate the Jacobian
{p,p,p,p,)= ;

the i^oilits having concurrent polar planes with respect to five surfaces lie on

* Consecutive tangent planes intersect in the tangent line conjugate to that

joining their points ot contact.
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and the points having concurrent polar planes with respect to six surfaces

satisfy the equation
({{p,p,p,p,p,p,)))= 0;

provided we write generally dQn= 'in„Spndq, where Qn= is the equation of

one of the surfaces.

Ex. 2. To find the osculating plane at a point on the curve of intersection

of two given surfaces.

[The osculating plane must pass through the intersection of the tangent

planes at the point q, and its equation must be of the form

Spir+ tSp2r=0,

where Spir=0 and Sj02^=0 are the tangent planes. We have identically

Spiq= Sp2q= ^Pidq= Sp2dq= 0,

and by (xiv.) the scalar t is determined by the condition

Sdpid^'+ t Sdp.^dq = 0,

so that the osculating plane is

SpirSdp2dq - Sp2rSdpidq = 0.

This has now to be simplified. Assuming a quaternion a satisfying

Sadq = 0, we have d^= [piP2«J- -^^^o dp^= (m^ - l)/id5', dpg= (mg - l)f2^q, and
accordingly

Sdp^dq= (m^ - 1) S[piP24/i l>iP2«]= ('«i " 1) ^ [PiF2«][?^i;P2/r^«]»

since /[a6c] = [/-^a/^6/-^c]. By Art. 146, Ex. 5, this becomes

Saq

SpoF.p^Sp^fr'a

SaqSaFiP2 Saf^~hi

\SpiqSp^FiP2SpJ,-\
- Sdp^dq= (m^ - 1) Sp2q ^p-2F^p2 ^pjc^ci = (wi - 1)

I

Sag- SaFiP2 Saf^-^a

= -(m,-l)Saq^Sp2F,p2.

Hence the osculating plane is

(m2 - l)SpirSpiF2Pi - (m^ - 1) Sp2^S;?2^iP2 =0-]

Art. 157. If we use the notation d^ to denote that the

differential of q is equal to a quaternion a, we shall have for the

k^^ polar of a with respect to the surface Q = 0,

d/Q = where da = 0, (i.)

and if m is the order of the surface, we may write the equation

of the k^^ polar in the form

d/d/-^Q= (II.)

the quaternion r being now the variable point, and ?' being

regarded as constant in performing the differentiations indicated.

If we write d,Q= Sap, (ill.)

we may consider the quaternion p to be derived from the scalar Q
by an operator D analogous to Hamilton's operator V, and we
shall have generally and symbolically,

j^_ lhcd]da-[acd]db+ \ahd]dc-[ahc]da .

(abed) ' ^' -^
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and in particular when q^w+ix+jy+hz, a = l, b = i, c=j and
d = k, we have

D = - 1-—j~-^k—= - V (v.)
diu dx "^ dy dz dw ^ ^

In this notation (i.) and (ii.) become

(SaD)^Q= 0, {SaT>y(SrJ)y'-'.Q= ..(vi.)

We may also formally identify our notation with Aronhold's
symbolic notation by writing the second of these expressions in

the forms (Sa6)HSre)— ^- = or e/e,— ^ = 0, (vii.)

where e is a symbolic quaternion devoid of meaning unless it

enters into a term homogeneous in e and of order in, and where
e^= Ser.

There is thus a considerable latitude in the choice of an
appropriate notation for the investigation of projective properties

of curves and surfaces.

Ex. 1. In investigations which involve diflferentials of the third order of

the equation of an arbitrary surface of order m, we may write

daQ= mSpaj di,daQ= 'm(m-l)Sbfa, dcdi,daQ=m(m — l)(m — 2)Scf2{a,b)

with liberty to transpose in any way the quaternions a, b, c, the function
/2(a, b) being a bilinear function of a and b (compare Art. 60).

(a) In terms of the operator D,

p = -'D.Q, /a= -^-i—-.DSaD.$, Ma,b)=—, ^^ ^,DSaDS6D.^.^ m ^' -^ m(m-l) ^' -^ ^^ ' ' m(m-l)(m-2) ^

{b) We may also write

Q= ^eq^, daQ= 'mSeaSeq^, dbdaQ= r)i{m-l)SebSeaSeq,

dcdfida^=m(m-l)(m - 2) SecSebSea,

where e is a symbolic quaternion devoid of meaning unless it occurs thrice in

a term.

(c) We have

P=fq =/2 {<1'>9)— eSeq^
; fa =f<^ (a, q)= e'^ea^eq

; /g (a, 6)= eSeaSeft.

^
And when we differentiate /a totally we find

d .fa=f . da+(m - 2)/2 (a, d^).

{d) The equation of the Hessian is

71 = or (fajbjcjd) = 0,

where n is the fourth invariant of / and where a, 6, c and d are arbitrary

points. It may also be expressed in the forms

{ee'e'e'") Sea Se'b Se"c Se'"dSeq Se'q Se"q Se"'q

=

;

^^ (ee'e"e"ySeqSe'qSe"qSe'"q=
;

SaDS6D'ScD"Sc^D'"(D$, D'^', ^"Q% D"'$"')= ;

{J)B'B"D'y.QQ'Q"Q"'= 0,

where e, e\ e", e"\ etc., are equivalent symbols (compare Art. 147, p. 270).
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Ex. 2. If J={p\P2PzPd ^^^ d$n=m„Sjt?„d5', where Qn is homogeneous
and of order m„ in the variable 9,

q .
J= [;?2P3P4] • ^1 - biPsi^J • Q2+ [PiPiP^ ' Qs - [P1P2P3} • ^4-

(a) For an arbitrary differential, and for an arbitrary scalar m,

q . dJ= (m - 1)J. dq + ^±Qi. d[p2PsPi]+ 2 ± (^i - m,)[p2PsPi]Sp\dq.

(b) If four surfaces have a common point, their Jacobian passes through
that point. If the orders of the surfaces are all equal the point of common
intersection is double on the Jacobian. If the orders of three of the surfaces

are equal, the fourth touches the Jacobian. If the orders of two surfaces are

equal, the line of intersection of the third and fourth touches the Jacobian.

(c) At a point common to the intersection of four surfaces of the same
order m,

q . dV= - m(m - 1)2 ± [paPapJSd^'/idg', where dpn={m - 1 )fndq ;

and hence the equation of the tangent cone at the double point is

^±{ap2Pc^p^Mir=0,

where a is an arbitrary constant quaternion.

{d) If four surfaces have a common multiple-point of order ^, we find that

d^-«.^/=2±[d*-V2, d*-V3, d^-^J.d^^i+ So,

d^-KJ={d^-'p^, d*-^jt?2, d*-i^3, d'=-V4)+2o',

where Hq and 2o' denote sums of terms which vanish when q coincides with
the multiple point, and we also have

di'Qi= m^^dqd^ ~^pi + vanishing terms.

(e) At the multiple point d^-^J and d-**-"* . ^J vanish, and therefore d'^-'^J

vanishes (as in (6)), and the Jacobian has a multiple point of order 4^-3
;

and because we may write (as in (a))

d4*-3.gJ=mdg.d**-V+2±(mi-m)[d*-V2. d^^-^s, d^-i/^JSd^d^-'jOi + ^o",

it follows when the surfaces are all of the same order that the Jacobian has
a multiple point of order 4^-2.

Ex. 3. Determine the equation of a surface which meets a given surface

at the points of contact of lines which meet it in four consecutive points.

[This investigation, though rather long (compare Three Dimensions,

pp. 559-567) affords some useful exercise in the manipulation of our formulae.

If q is the point of contact and qr the tangent touching at four consecutive

points, we have

^= 0, mSrp = SrD.^= (), m(m- l)Sr/r=SrD2. ^ = 0, SrD».$= 0.

We may suppose the point r to lie in an arbitrary plane Srl=0, and we
have to obtain the resultant of the four equations in r and finally to free it

from the arbitrary l. Let Sra= and Sr6 = be the equations of planes

through the generators of the quadric (r variable) Sr/r=0 which lie in the

tangent plane Srp= 0. Thus we have r= [apr] and r' = [bpl] for the points in

which three generators meet the arbitrary plane. One or other of these

points must lie on the cubic in r. Hence

SrD3 . Q . Sr'D'3 .Q'= 0, or SrD'^ . Q' . Sr'D^ .Q= 0,

or . (SrD3.Sr'D'3+ S/D3.SrD'3)^$'=0,
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where the accents applied to D and Q are temporary marks connecting
operator and operand. Now this may be written in the form

(4:B^-3ABC)QQ'=0,

where .4 = SrDSr'D, 25= SrD'Sr'D + Sr'DSrD', (7=SrD'Sr'D',

and it is easy to express the operators A, B and C in terras of the function/.

In virtue of the definition of the planes Sra = 0, Sr6 = 0, we have identically

Srfr= SraSrb+ SrpSrc,

where Src= is some plane. Hence we find on replacing r and r' in A^ B
and C by [apl] and [bpl] that

A=S[plD]f[plDl B= S[plI)]f[plD'l C=S[plI)']f[plT>'].

Remembering that p=fq and that Spq= 0, we have by Art. 146, Ex. 5,

Sql SqB'

B=-n Sql Slf-H S//-1D' =S{DSql-lSq'D)F(D'^ql-lSqI)'),

SqT> Slf-^D SDf-^I)'

with similar expressions for A and C, where F=nf-^ is Hamilton's auxiliary

function. Writing for the moment e= Y>^ql — l'^qD and remembering that
D and D' operate on Q and Q' solely and not on q as involved in the
structure of the operators, we proceed to expand and to operate on ^.
We have

B^q^{^eFJy . S^^ - ^eFl^qD'f . q
= Sei^D'3. q. SqP

-

3m(m - l)(m - 2) . n(SeFeSeFlSql^ - SeFl'-Seq^ql\

because by the identities at the beginning of this example

SqT>' . Sei^D'2 . Q'=7n{m - l)(m

-

2)SFefFe=m{m - l)(m -2).n. SeFe,

SqI)'^.SeFD'.Q'=m{m-l)(m-2)SFep=m{m-l)(m-2).n.Seq=0,
since Seq=0 and SqJ)'^ . q= 7n{m-l){m-2) . Q=0.

We retain for a purpose the term in Seq.

In like manner

BC.q = SD'i^D' . SeFD' . q . S^^^ _ SgD'(SD'i^D' . q^eFl

+ 2^lFJy^eFT>' . q)^qP+ S^D'2(Se/^D' . q^lFl+ 2^lFiy . q . ^eFl) . S^^.

The term Sg-D' . SD'i^D' . q may be reduced by writing for the moment
D'= 2a'SaD', where as is easily seen 2S«a'= 4. This term becomes
m{m — l)(wi — 2)2Sa/7^a'= 4m(w - l)(m — 2) . ?i, and hence we find

ABC. q^^eFe . SeFD' . SD'i^D' . ^'S^^^

- m{m - l)(m - 2)n{\'^eFe'^eFl'^qP- - ^eFeSlFlSeq^ql),

From these two relations we get, if e'= D'Sql — ISqD',

{4B^-SABC)q==(4S€Fe'^-3SeFeSeFe'Se'Fe').Q'

= (4Se/^D'3 - ^SeFeSeFUSB'FB') . Q . SqP

- Sm{m - l)(m -2).7i. (SeFeSlFl - 4SeFl^)SeqSql,

and the last term vanishes because 8^9'= 0. Now it will be observed that

the operator in the first term is precisely the same as the original operator
with D' substituted for D'Sql - lSqT>'. This remark allows us to write down
the result of operating on QQ' in the form

{4Bf^ -3ABC)Qq ={4SI)FD'^ -SSBFDSBFD'SD'FD') . Qq .Sql^

- 3m{m -l){m-2).n. (SB'FB'SIFI - 4^J)'FP)SqJ)' . q . Sql*,
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the object of the retention of the term in Sqe being now apparent. But
the term Ave have retained vanishes by the reduction we have already made
use of. Thus Sql^ comes off as a factor, and the equation of the surface is

(4SDi^D'3 - SSD/'DSDi^D'SD'i^D') . QQ'= 0.]

EXAMPLES TO CHAPTER XVII.

Ex. 1. A right line meets three fixed lines aa\ hb' and cc'. The locus
of the harmonic conjugate of the point of intersection on the third line with
respect to the points on the other two is the intersection of the planes

{hh'cq){aa'cc')+ {aa cq){bb'cc')=
;
{bb'c'q){aa'cc')+ {aa'c'q){bb'cc')= 0.

Ex. 2. The general equation of a quadric through the conic

Sqfq=0, Slq= is Sqfq-SlqSrq = 0.

Find the value of I' in order that the quadric may be a cone having its

vertex at a and show that the equation of the cone may be written in the
^^^"^

S { ^S^a - aSlq }/{ qSla - aSlq } = 0.

Ex. 3. A plane aa'p is drawn through a fixed line aa', and the lines in
which it meets the planes 8^5- = and Srq= are joined to the points b and
b' respectively. The equations of the joining planes are

(qaa'p)Slb-(baa'p)Slq = and (qaa'p)Srb' -{b'aa'p)Srq= 0,

respectively, and when p varies the locus of their intersection is the quadric
surface

^^g^^ _ ^g^^^ ^g^,^, _ ^,g^,^^ ^^ ^,^ _ ^

Ex. 4. The four faces of a tetrahedron pass each through a fixed point,
a, b, c and d respectively. The three edges in the face jt? which contains the
point d lie in the planes, I, m and ?i respectively. The vertex q opposite the
face p is the intersection of the planes

SqlSap - SqpSal= 0, SqmSbp - SqpSbm= 0, ^qnScp - SqpScn = 0,

and the vertex q describes the cubic surface

(aSql-qSal, bSq7i~qSbm, cSqn-qScn, d)= 0,

having the intersection of the fixed planes as a double point.

Ex. 5. Find the locus of the vertex of a tetrahedron, if the three edges
which pass through that vertex pass each through a fixed point, if the
opposite face also passes through a fixed point and the three remaining
vertices move in fixed planes.

Ex. 6. A plane passes through a fixed point d, and the points in which
it meets three fixed lines a^ag* ^1^2 '^^^ ^1^2 ^^'^ joined by planes to three
other fixed lines a^a^, b^b^, and C3C4. The locus of intersection of the planes
is the surface

(«l(«2«3«4?)-«2(«^l«3«4^)5 h{hh^i<l) - hihhh9\ ^1 (^2^3^43') -C2(ClC3C49'X 0?)= 0.

Ex. 7. The sides of a polygon pass through fixed points, a^, a^^.-.an,
and all the vertices but one move in fixed planes, ^1, I2, •-. In-i- If q is the
free vertex, the next is fiq= q^l^a]^- a^^l-^q, and the locus of the free vertex
is the twisted cubic

[fn-ifn-2'"f2fiq, q, an]=0.

Ex. 8. All the sides of a polygon but one pass through fixed points

«i, a^, ... an-i, the extremities of the free side move on fixed lines bb' and cc',

and all the other vertices on fixed planes l^, l^^-.-ln-^', find the surface
generated by the free side.
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Ex. 9. The points of contact q of tangent planes through the line ah to

the quadric '^qfq = () satisfy the relation*

fq=x\ahq\, where n-\-x^{^{fafh){ah)-^Jafh\ah'\\=%

n being the fourth invariant of/, and if c is arbitrary

^= [/«,A fc-\-x[abc^.

Ex. 10. If the line ah is a generator of the quadric ^qfq= 0,

\ah\ {ab)

Ex. 11. The generators of the family of quadrics ^q(xfi+yf2+^/3)^ =
compose the complex of lines of the third order represented by the deter-

minant equation

\Sqf„q, Spf^q, Spf„p\=0 (n = l,2ovS).

(a) When p is an arbitrarily selected fixed point, this equation represents

a cubic cone, and every edge of the cone determines a definite quadric of the
family. The tangent planes at p to the quadrics pass through the edge of

the cone which joins p to the point [fiP, f^Pi f^P] > ^^^ ^^^ tangent plane to

the cone along this edge touches at the point p the quadric of which the
edge is a generator.

(6) When p lies on the Jacobian curve

[fiP^ Ap^ Ap]= %
the cubic cone breaks up into a plane and a quadric cone. The cone is a
member of the family of quadrics, and the plane touches at p all the
quadrics of the family which pass through jt?.

(c) The locus of points of contact of a plane 8^5'= with quadrics of the
family is the cubic curve in which the plane cuts the surface

{h M^ M^ M)= ^
'^

and the locus of points of contact of pairs of the quadrics is

Ex. 12. The integral of the differential equation

(dg', /^)= 0, or dq=fq.dt,

where /is a linear function, may be written in the form

q= e^^ . a,

where a is a quaternion constant of integration.

{a) This integral represents a doubly infinite family of curves, and a
determinate curve of the family passes through an arbitrary point provided
it is not a united point of the function/

(6) The equation p= e~^-^' .h

angent line develops

S6a=0, S6/'a= 0, S6/2a=0

is the reciprocal of the tangent line developable of the curve determined by a
if the conditions

are satisfied.

(c) An arbitrary plane which does not pass through a united point of /is
osculated by a single and determinate curve of the family.

^For another form see Art. 14G, Ex. 5,
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{d) An arbitrary tangent line to an arbitrary curve of the family is cut

in a constant anharmonic ratio at the point of contact and at the points of

intersection with three of the united planes of/

(e) A right line which cuts the faces of the tetrahedron in points having

a certain anharmonic ratio touches a definite curve of the family, and if

p and q are two points on the line

{P^ <lJpJ<l)=^'

{f) Any linear transformation which leaves unchanged the united points

of /j merely interchanges curves of the family,

{g) The locus of points of contact of tangent lines drawn from an
arbitrary point c to curves of the family is the twisted cubic

the locus of points of contact of tangent lines drawn through an arbitrary

line cd is the quadric
^^^^^^^_ ^ .

and the locus of points of osculation of planes through c is the cubic surface

(^, q. k. A)=o.

Ex. 13. The equation of the complex of lines cutting a tetrahedron in

points having a given anharmonic ratio may be written in the form

{p,q^fP,h)= ^ where h:ih,hzl±^A
H "~ ^3 ''4 ~ ''1

is the given anharmonic ratio, t^^ t^-, t^ and t^^ being the latent roots of /and
the tetrahedron being determined by the united points of the function.

{a) The differential equation of curves whose tangents cut the tetrahedron

in points having the given anharmonic ratio is

(d^', q, fdq,fq)=0;

and a solution of this equation is

q= e^'^" .a,

where a is an arbitrary quaternion and where u and v are functions of t.

(6) This equation includes the family of curves (compare Ex. 10, p. 286)

q= {f+tr.a.
(c) In general the reciprocal of the tangent line developable of the

curve (a) is _f/:±!f ^t

where ^ha= ^hfa= ^hfa= 0.

(d) The anharmonic ratio of the point of contact and of the points in

which a tangent line to the curve (a) cuts the faces of the tetrahedron

corresponding to the roots i^, ^g and t^ is

to "T" ^ t-t Li}



CHAPTER XVIII.

HYPERSPACE.

Art. 158. Many of the methods of quaternions are applicable

with but slight change to the general case of a " flat " space of

n dimensions.

Commencing with the multiplication of two vectors or directed

lines in space of n dimensions, we may suppose the two vectors

to be transferred to one common plane or even to be made
coinitial, and we may define the product a/5 very nearly in the

same manner as in quaternions. In the formulae of definition

a^=\\aP+ N^aP, I3a= -Y^a^+ Y^a^, (l.)

Y^ajS or SaS is minus the projection of one vector on the other

multiplied by the length of the latter, and Y^aj3 is the directed

area of the parallelogram determined by a and (3, rotation in the

plane from a to /3 being positive. We can no longer identify

Y^a^ with a vector perpendicular to the plane because in space

of many dimensions there is an infinite number of directions

perpendicular to a plane.

In particular if i^, i^, . . . in are n mutually rectangular unit-

vectors in the space of n dimensions, we have by (i.)

i^=-l, it^=-l, isit+ itis^O, (ii.)

where s and t are any two numbers from 1 to n.

The functions Y^afi and Y^a/S are doubly distributive, and
hence the binary product a/3 is doubly distributive. We define

for products of higher order that multiplication is thoroughly
associative and distributive, and these principles in conjunction

with (i.) form an adequate symbolical basis for the whole
calculus.

If i| and i^ are any two mutually rectangular unit vectors in

the plane of a and (3, and if rotation from \ to i^ is in the

same sense as that from a to l3, we may write

Y^a/3= iii2TY,a/3, (ill.)
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where TY^a^ is the number of units in the vector area VgO/S.

The symbol '^^'ig i^epresents a unit vector-area in the plane of a/3

or in any parallel plane. This s^^mbol ^^ig is of a distinct kind
from the symbols i-^, i^, ... in, and it cannot be expressed as a

linear function of the latter.

In virtue of the laws of multiplication

v-ivc} . v-i —— ~~*
^of'i • t'-i ^~ t'o anu. ^1^2 * 2 "^ """

1 ?

and hence by (iii.) the effect of multiplying a vector area into a

vector in its plane is to turn that vector through a right angle

in the plane and to multiply its length by the number of units

in the area.

For three vectors, which may be transferred to a common
space of three dimensions or even rendered coinitial, the laws of

the calculus allow us to write

a^y = V3a/3y+\V^y (iV.)

w^here Vga/Sy denotes the part of the product depending on sets

of three distinct units combining in the irreducible products

HHH^ etc., and where V^a^y arises from reducible products such

as i^— — i^, i^i^— — i^, i-^i^h= S- ^^ ^^^^^ if a = ^X{i^, /3 = S^/i^i,

y = ^z^i^, where x, y and z are scalar coefficients, we find

V3a/3y = 2|a?i2/2^3lW3,
I ^^

where
| x^y^z^ \

denotes a determinant.

The first part Vga^y of the product of three vectors represents

the directed volume of the parallelepiped determined by the

vectors, it being now necessary to distinguish between volumes
in different spaces of three dimensions. In particular i{i^i^

represents unit volume in the space of i-^, i^ and %. The
function Y^a^y is evidently combinatorial with respect to

the three vectors. It is unchanged when a is replaced by
a+ vfi+wy, etc., and it changes sign when any two of the

vectors are transposed.

We have given the expansion for V^a/Sy in terms of the unit

vectors and of the scalars x,y, z; but there is another method of

wide application which we may employ. It is apparent that we
must have

V^a/^y= UaV^Sy+ V^Y^ay+ WyY^a^,

where u, v and w are numbers. Interchanging (3 and y we have

Y^ay13 = UaY,y/3 -f vyYoa/B+ w/3Y^ay
;

adding and attending to (i.) we find

Via(/3y+y/3) = 2aV„^y = 2waV<^y+(f+«;)(^V„ay+ yV„a/3),
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and thus i6= l, v+i(; = 0. Similarly interchanging a and fi we
find that 'zy= l and u-\-v= 0, and thus

V.a^y = aV,^y- /^V^ay+ yV,a/3 (vi.)

By the same process we arrive at the result

a^yS= ^\a^yS+ \,a^y6+ \^a^yS :(vil)

for the product of any four vectors, where

Y^a^yS= V.,a^Voy^- V^ayVq^^+ V^a^Vo/3y+ V,^yVoa(5 \

- ^h3S\\ay+ \.yS\,a^ ; I (vill.)

Voa^y^= Voa^Voy0^- VoayVo/3^+ \,aSV,^y
; J

and it will be noticed that in these relations the determinant
rule of signs is in every case obeyed, namely starting with the
term aY^^y, the next term, in which /3 comes first, has a minus
sign and so on. In like manner for five vectors

a^ySe= Y.a/SySe+ Y.a^ySe+ Y.a^ySe ; )

Y^a^ySe = 2± Vga^yVo(5e ; Y^a^ySe= Z± aVo^y^e ; )
^

'^

the first terms in the sums being affected with the positive sign

and the determinant law of signs being obeyed. (Compare
Art. 147, p. 270.)

Considering more particularly the function of m vectors

V^ajag . • . am, it is apparent from various points of view, that it

is combinatorial with respect to the m vectors. We may prove
that it changes sign whenever any two vectors are transposed,

and hence we may deduce the combinatorial property. Adding
the products

aia2a3 ... a„i = (y,„4-V^_.2+ V^_4+ etc. ...)aia2a3 ...a,n,l , .

a2Ctia^ '•' am= (Vm+ V^_ 2+ V,„_ 4+ etc )a.2a^as ... amJ ' \

in the second of which a^ and a.2 are transposed, the sum is

Saga^ . . . am^oOLiO^- In this sum the highest terms in the units

are of the order m— 2, and consequently interchange of con-

tiguous vectors changes the sign of Yr^a^a^ ... ap ... am- Hence
transposition of any two vectors changes the sign ; for example

p — l changes of sign accompany the transference of ap to the

first place in the function, and p — 2 changes arise when a^ is

transposed with a^, with a^ and so on till it reaches the place

originally occupied by ap. The function consequently vanishes

if an;f two vectors are identical, and when the vectors a are

replaced by vectors /3 which are given as linear functions of the

a, the function is simply multiplied by the modulus of the

transformation.
J.Q. U
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' Generally any function such as

2+ Vpaja.3«3 ••• ap^^n-pttjo+ia^+a •••am

is combinatorial with respect to the vectors, and when we
express the m vectors a in terms of m mutually perpendicular

vector units in their '>7i-space, we find that

|m "

11^—- y^mOLiU^ . • • am = 2+ ypaia2 • • • apVm -pap+iap+2 • • • «m- (XI.)

\_P_ l^~-P
This includes a number of relations such as

SY^a/3y= aV^iSy- /^V.^ay+ yV,a^

;

aYsPyS-i3Y^ayS+ yY^al3S-SY^al3y = if \>^yd^ = 0.

Again when the m vectors lie in a space of 171 — 1 dimensions

so that they are linearly connected, we have relations of the

form A- ^r
2» m - 2«oa3 . . . a»n _ 1 > oaia-,rt /vtt \

V 7.
' V-^A^/

V„i-iaia2«3 •.. «w-i

which may be verified by operating with Y^a^ , etc. In particular

for two and three dimensions, we recover the formulae, Art. 2T
(III.) with Spa/3 = and Art. 26 (ii.).

The theory explained in this article may be compared with
Grassmann's Ausdehnungslehre* Grassmann's inner ]?voduct

of two quantities is the function —Y^afi, and his outer product
of a^, ag, . . . a^ is Yma-^a^ • • • am- These so-called products are thus
only parts of a complete associative product.

Aht. 159. There is a remarkable difference between this

general theory and the theory of quaternions which may be
illustrated by a special example. The sum of a number of
vector areas is not an area vector, or the homogeneous quadratic
function of the units

^ = V2aa'+ y2/3/3'+ V2yy + etc (i.)

cannot generally be expressed in the form Ypp. The geometrical
reason for this is that two planes, for example p = x{i^+ ^2'^2 ^^^
p = oo^i^-\-xJ.^, have not necessarily a common line although they
may have a common point—the origin of the vectors p in the
example.
To discover a canonical system of vector units in terms of

which a homogeneous function (q) of order m may be expressed,

observe that qp = Ym+iqp-^Y,n-iqp, and that the line vector

^iqYm-iqp is not generally parallel to p but that it is a linear

and distributive function of p. We are thus led to consider the
linear and distributive function

<pp = yiqY,r.iqp, (II.)

^See Proc. B.I. A., 3rd Series, vol. vi., pp. 13-18 (1900).
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and because

V^cr^^p = Vq . (TqY,n - iqp= V^ . V„,

_

laqV^i -iqp

= Vo . y„, _ iqcrY,n-^pq = Yq . V,, _ i/ogV,,, _ iqcr = AV^a-,

the function ^ is self-conjugate, and just as in quaternions its

axes are all real and mutually rectangular.
In particular for the quadratic A, let i^ be an axis of

<pp = yiAy^Ap so that <pi^ = a-^2h' where a-^^ i® a scalar.

Then <^Y^Ai^ = V^AY^AY,Ai = Y^A(j>\ = a^^Y^Ai^, and Y^Ai^
is also an axis and it is perpendicular to i^ and parallel to i^

suppose. This shows that in terms of the canonical units

A = ^12^2+^uhh+ • • • + Ct.2m - 1, 2mi2m - 1^2.1, (HI.)

SO that a quadratic in 2m+ 1 or in 2m units may be reduced to
Til terms involving pairs of units, or to the sum of m area vectors.

There is obviously indeterminateness in the units to the extent
that ij may be any unit in a definite plane—that of i-^ and i^,

and ig may be any unit in another definite plane, and so on.

An expression such as A corresponds to an angular velocity

in the space of three dimensions. Consider the transformation
which converts line vectors (p) into line vectors ((r = (pp) and
which preserves unchanged lengths and mutual inclinations, so

Y^a-a = Y()<pp(j)p = YqPp.

If a is an axis of this function and t the corresponding root,

we have
i2„2 = v„0a^=VX= a^

and therefore / = ! or else a^ = 0. The former alternative cor-

responds to non-rotated directions. The latter requires a to

be of the form \-\-\/ —I . i^—a vector perpendicular to itself

directed to one of the circular points at infinity in the plane

of l^ and ig (Ex. 1, p. 96). Corresponding to this there is

a conjugate axis, a'= i^— -v^ — 1 i 2- Again if /3 is any other

axis corresponding to the root s,

SO that axes, corresponding to roots which are not reciprocals

one of the other, must be perpendicular. From this it appears

that the transformation is specially related to a set of hyper-

perpendicular planes, i^l^, %\, etc., and that it consists of

ordinary rotations in each of these planes, so that we may write

where 5= gi2^s49'56 •••^2m-i, 2m, g'i2
= cos 1^12+ ^2^1^ i"

and where the factors q^^, q^^, etc., are commutative because we
h^ve •••• ..•• ....

|...(IV.)
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Also we have ^^^2 • hh— '^<i—'~^'

It may at once be verified that the operator q^^^i )^i2~^ ^^^ ^^
effect except on vectors in the plane of i^i^, and that it turns

vectors in this plane through the angle a^^.

Now we may write (Art. 29 (v.), p. 28)

and because the factors are all commutative we may also write

q = e =e (v.)

(compare (ill.) and Art. 29 (x.)), and the rotation is effected by

the operator e { )e

For a small rotation, if d^ is a small scalar whose square is to

be neglected,

hAAt -iiAdt

o-= e pe =(1+Md0p(l- J^dO= p+ d]^Vi^p, ...(vi.)

and thus A plays the part of an angular velocity.*

Art. 160. For projective geometry in n space we may use

the method explained in the last chapter, and the symbol for a

point is the sum of a scalar and a vector, so that

9 = V„3+ V,? = (l + |i2)v„g = (l + OQ)Vog .....(i.)

represents a p.oint of weight V^g at the extremity of the vector

The equation
q = t,a,+ t^a,+ eic. ... + t^a^ (ll.)

represents the (m— l)-flat which contains the points a^, ag, ... a^-

In accordance with Hamilton's notation, we shall write

-^ ni ' HI - 1 • ' 1^2 1^.3 • • • ' i^m ' 0^1 '

or briefly, Mm = V^[a]^+ V,,.i[a]^, (iii.)

as the symbol of the (m — l)-flat containing the 7n points a. To
show that this symbol really determines the flat, observe that

we have

Mm={V^«ia2...am-V,rt_i(a2— ai)(a3— ai)...(a„i-ai)}nVoai,(lV.)

where aiVQa^= Y-^a-^ and where IlVoa^ is the product of the
weights of the points (Art. 14-4 (iv.)). Now V^aia2...am or

Vm«i(a2--ai) ... (am— ai) is the directed region determined by the
origin and the m points, and V^_i(a2— ai)(a3— aj ... (a,n— cti) is

*See Proc. R.I. A., Series III., vol. v., pp. 73-123.
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that determined by the ni points. Denoting the latter by
i^io ... im-\R, where R is the magnitude of the region determined
by the m points and where iji^...im-i are mutually perpen-
dicular unit vectors in the flat, the symbol becomes

[a],„= (c7-n)iii2...'i,„-i.i^n\>i, (v.)

wliere cr is the component of the vector a^ which is perpendicular

to every line in the flat, or in other words, where trr is the vector

perpendicular from the origin to the flat. But when we know
oT and the product of the vectors i we know the flat,* and we
have V r 1

V ni - 1 LetJ«t

where U has its quaternion signification. We notice also that

the point V r -i

P™ = l+-^f^^ = l---^ (VII.)

is the reciprocal with respect to the auxiliary quadric Y^g- = of

every point in the flat—in other words, this point is the point

in the 77i-flat of the origin and of the m points a which is

reciprocal to the (m— l)-flat of the points a.

In point symbols the equation of the flat is

[gai«2...aj = 0, (VIII.)

the vanishing of this equation being equivalent to (ii.).

Other general expressions admit easily of interpretation on
the principles laid down in this article.

*The vector equation of the flat is p= uT + 2xi»i.
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Aberration, 85.

Academy, Royal Irish, 101, 152, 163,

164, 263, 306, 308.

Acceleration, trajectory of point under
uniform, 64; relative, 171 ; angular,

171 ; centre, 172 ; of a particle, 184
et seq. ; of a rigid body, 194 et seq.

Activity of forces on element of strained
medium, 240 ; of electric and mag-
netic forces, 251.

Addition of vectors, 1 ; of quaternions,

9 ; of vector-arcs, 16 ; of weighted
points, 264 ; of vector areas in hyper-
space, 306.

Algebra, vectorial, 11.

Algebraic sign -
, use of, 2.

Algorithm of «, j, k, 11 ; for hyper-
space, 303.

Almucantar, example on, 176.

Amplitude of versor, 27.

Analytical expressions for V, 74, 225.

Anchor-ting, 59.

Angle of quaternion, 13; differential of,

69 ; directed, 30 ; Eulerian, 33 ; of

intersection of spheres, 50 ; element
of solid, 86 ; of contact, 134 ; of tor-

sion, 134 ; subtended by vortex ring,

solid, 235.

Angular acceleration, 171 ; momentum,
184, 195; velocity, 170, 187; of

emanant, 132 ; of strained element,
212 ; in hyperspace, 307.

Anharmonic coordinates, 43 ; equation
of sphere in, 54 ; in relation to

weighted points, 269 ; ratio of collin-

ear points, 41, 45; of four points in

space, 56 ; of points on a conic, 267
;

generation of hyperboloid, 65
;
pro-

perties of ruled surface, 139 ; of

twisted cubic, 268 ; unaltered by
linear transformation, 272 ; complex
of lines cutting faces of tetrahedron
in constant, ratio, 302.

Anisotropic medium, 243, 251.
Apparent double points, 292.

Appendix to new edition of Elements of
Quaternions, 99, 135, 211.

Arc, vector-, 17; cyclic, 118; of curve,
134.

Area, directed, 23 ; of spherical triangle,
;^3 ; -vector in hyperspace, 303.

Areal coordinates, 48 ; velocity, 186
;

equation of continuity, 230.
Aronhold's notation, 213, 297.
Aspect of plane, 23.

Associative addition of vectors, 2

;

multiplication of i,j, k, 10; of quat-
ernions, 11, 119 ; of vectors in hyper-
space, 303.

Astatics, 160.

Astronomy, examples from, 84, 85, 130,

174, 188. "

Asymptote of conic, 64 ; of curve, 152.

Asymptotic cone, 107 ; lines on surface,
295.

Attraction to fixed centre, particle
moving under, 185, 186 ; Green's
theorem, 218; spherical harmonics,
222.

A usdehnungslehre, 306.

Auxiliary fuiictions, % and ^, 90, 91
;

F, G and B, 274
;
quadric, 266 ; for

hyperspace, 309.

Axes of linear vector function, 94 ; of
self-conjugate function, 96 ; of quad-
ric, 111 ; of section of. Ill ; of screw-
systems, 163; moving, 171 ; for curve,
134; for surface, 146; for orbit, 188;
for body, 196; of inertia, 197; of

elastic symmetry, 245.

Axis of quaternion, 13 ; radical, 51 ;

Poinsot's central, 156, 169; instan-
taneous, 170.

Ball, Sir R. S.. theory of screws, 156,

163, 170, 203, 205.
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Base-point, 171, 19o.

Bilinear function, 297.
Binet's theorem on axis of inertia, 197.
Binomial, 134,

Biquadratic equation of linear quater-
nion function, 274,

Biquaternions, 20, 58,

Bisecting sides of spherical triangle,

triangle, 31,

Body, rigid, dynamics of, 196 et seq.
;

under no applied forces, 198 ; dyna-
mically equivalent to four particles,

199 ; dynamical constants of, 199,

202, 207 ; impact of, 203 ; con-
strained, 2<>4 ; resultant force and
couple on gravitating, 22.5 ; moving
in fluid, 241.

Bonnet's theorem, 192.

Brachistochrone, 192,

Bright curves on surface, 87.

Bulkiness of fluid, 240,
Burnside, theory of groups, 104.

Calculus, icosian, 104 ; of variations,

192.

Canonical, form of V, 7o ; of two linear

functions, 100 ; of screw-sj'stems,

164 ; equations of quadric and linear

complex, 278 ; vectors for rotation in

hyperspice, 307,

Cavity filled with liquid, motion of body
containing, 241,

'Central, sections of quadric. 111 ; sur-

faces, uon-, 117 ; axis of forces, 1.56,

. 163 ; of displacement, 169 ; orbit, 186.

Centre, mean, of tetrahedron, 5 ; of

mass, 5, 264 ; of circle inscribed to

triangle, 48 ; radical, .52 ; of quadric,

117; of curvature of curve, 1.34; of

spherical curvature, 136 ; locus of

mean, of corresponding points, 152

;

of furces, Hamilton's, 157 ; astatic,

160 ; of three-system of screws, 164
;

particle attracted to, 185, 186.

Centres, of curvature of quadric, 122

;

surface of, 125 ; of surface, 144 ; of

generalized curvature, 286, 295.

Chain on surface, equilibrium of,

166.

Characteristic surfaces in optics, 228.

Characteristics of curves and surfaces,

numerical, 290.

Charpit's differential equations, 151.

Chiastio homography, 208.

Circle, inverse of line, 53; at infinity,

ima¥:inary, .54 ; monomial equation
of, o5 ;

quaternion equation of, 58
;

vector equation of, 82 ; ellipse pro-

jected into, 83 ; osculating, 134, 136,

152 ; surface generated by, 154
;

excluding point from integration,

I

Circuit, integration round, 73, 215

;

circulation and flux, 232; moving in

perfect fluid, 238 ; electro-magnetic,
249.

Circuitation equations for electro-mag-
netic field, 250.

Circular, points at infinity, 96, 126

;

sections of quadric, 113 ; of cone,

118; in relation to strain, 178;
tangent cylinder, 115; point at in-

finity in hyperspace, 307.

Circulation of vector, 232.

Circumscribed developable of confo-

cals, 126
;
generalized, 286.

Clifford, biquaternions, 21.

Coaxial, spheres, 51, 53 ; linear vector
. functions, 95, 97 ; stress and strain

functions, 238.

Co-efficient, differential, 63, 67 ; of

.friction, 190; of restitution, 204;
virtual, of screws, 206 ; of viscosity,

239.

Coelostat, example on, 1.30.

Coincidence, of axes of function, 94 ; of

united points, 275,

CoUinearity, of three points, 5, 37,

266 ; of three planes, 39.

Collision of two bodies, 203,

Combinatorial functions, 265, 270, 304.

Commutative, addition of vectors, 1 ;

multiplication, 17 ; order of diff"er-

entiation, 79 ; linear functions, 95

;

small displacements, 169 ; strains, 182.

Complementary curve, 291.

Complex, or imaginary, 3, 20, 58 ; n^
roots of quaternion, 28 ; of right

lines, 40 ; surfaces formed by lines of,

153 ; related to astatics, 161 ; of axes
of inertia, 197 ; linear, '2~'y€t seq. ; of

lines connecting corresponding points,

278 ; of generators of systems of

quadrics, 301 ; tetrahedral, 302.

Composition, of wrenches, 164, 204;
of displacements, 168.

Concurrence of four planes, 39, 267.

Concyclic quadrics, 121,

Conductivity, electrical, 251,

Cone, tangent to sphere, 49 ; to quadric
108 ; to confocal, 124 ; standing on
curve, 65 ; of axes of system, 0^ -f- <02»

101 ; asymptotic,. 107 ; edges of, in

plane, ilO; and sphero-conic, 118;
through five lines, 121 ; of revolu-

tion through three lines, 126 ; differ-

ential equation of, 149; tangeut to

generalized confocal, 281.

Confocal, quadrics, 121 ; tangent cones,

124 ; vector equation of, 124 ; re-

lated to astatics, 162 ; related to

axes of inertia, 197 ; equipotential

system, 228 ;
generalized confocals,

279 ;
quaternion equation of, 286.
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Congruency of lines, 41 ; surfaces

generated by lines of, 153 ; focal

and extreme points, 153 ; of axes
of three-system of screws, 164,

103.

Conic, related to triangle, 48 ; vector
equations of, 63; focal, 114, 126;
sphero-, 118 ; and Pascal hexagon,
121 ; orbit, 187 ; on wave-surface,
261 ; in point symbols, 264, 267 ;

anharmonic property of, 267.

Conical refraction, elastic solid, 248

;

dielectric, 260,

Conical rotation, represented by

q {
)q~'^, 18 ; related to spherical

triangle, 32 ; in terms of Euler's

angles, 33 ; inscribed polygon, 55 ;

examples, 60; differential oi qaq~^,

69, 169 ; and linear function, 100

;

and astatics, 160 ; finite displace-

ments, 168 ; examples, 173 ; strain,

178 ; and linear quaternion function,

283 ; in hyperspace, 307.

Conicoid, see Quadric.
Conjugate, of quaternion, 12 ; of pro-

duct, 15 ; radii of conic, 63; of linear

function, 89 ; axes of function and of

its, 94 ;
quadric, 107 ; radii of qua-

dric, 110, 112; of quaternion function,

273, 275 ; tangents, 295.

See Self-conjugate.

Connected region, 217.

Conservative system of forces, 184 ;

acting on perfect fluid, 238.

Constant, curve having ratio of curva-

ture to torsion, 137.

Constants of linear function, 88, 178 ;

vector, of integration, 137, 186; dy-
namical, of rigid body, 199, 202, 207;
elastic, 239, 244 ; dielectric, 251 ; of

quaternion function, 272.

Constrained motion of particle, 189;
of rigid body, 204.

Construction of product of two quater-

nions, 15 ; fourth proportional to

three vectors, 31 ; ellipsoid, 114

;

vectors related to wave in dielectric,

259.
Contact, of line and sphere, 49 ; and

quadric, 107 ; and confocals, 124

;

four point, of tangent, 298.

Continuity, equation of, 72, 230, 238 ;

areal and linear, 230.

Convention respecting rotation, 7 ; nota-
tion, 20.

Convergence of vector, 72, 212.

Co-ordinates, six, of a line, 40 ; anhar-
monic, 43, 48, 54, 269 ; curvilinear,

66, 74, 227 ; Cartesian, 75 ; elliptic,

124, 286; homogeneous or tetrahedral,

268*
Coplanar versors, 27.

Coplanarity of four points, 5, 38 ; in

point symbols, 266.

Co-reciprocal screws, 206.

Co-residuals on cubic, 101.

Correspondence, see nomographic,
Transformation.

Cov^ariant linear functions, 101, 290.

Cremona transformation, 101.

Cross ratio, see anharmonic.
Crystalline medium, damped oscilla-

tions in, 186
;

propagation of light

in, 256.

Cubic, of linear vector function, 93, 100 j

twisted, 93, 104; cone, 101; twisted,

locus of feet of normals, 109 ; of

points of contact with confocals, 123;
tangent line and osculating plane,

133 ; related to moving body, 172 ;

developable generated by, 267 ; locus

of points in perspective with corre-

spondents, 278 ; transformation of,

285 ; characteristics of, 293.

Curl of vector, Wo-, 73, 213.

Current, electric and magnetic, 250.

Curvature, of curve, 132 et seq. ; of

surfaces, 141 ef seq., 215 ; of quadric,

122, 125 ; of orbit, 189
;

generalized,

286, 295.

Curve, in terms of parameter, 62 ; of

intersection of confocals, 125 ; me-
trical properties of, 131 et seq. ; uni-

cursal, 152 ; intersection of quadrics,

285 ; complementary, 291 ; character-

istics of, 292.

Curves, family of, 148 ; ^ = {/+ tf'a, 286;

q = e*f.a, 301.

Curvilinear coordinates, 66, 74, 124,

226.

Cusp, condition for, 63, 83.

Cuspidal edge, 126, 136, 268, 286.

Cyclic planes of quadric, 113, 178; arcs

of sphero-conic, 118.

Cyclical transposition under sign S, 16»

Cycloid, 83, 193.

Cylinder, right circular, 45 ; standing
on curve, 65 ; circular tangent, to

quadric, 115; case of general quadric,

117 ;
geodesic on, 137; torsal tangent

planes of, 140 ; differential equation
of, 149 ; related to astatics, 161.

Cylindroid, 84, 165.

D symbol of diflferentiation, 229 ; of

operator analogous to V, 296.

Damped oscillations, 186.

Deformation of surfaces, 145,

Degraded, cases of quaternions, 9, 19

;

symbolic equations, 95, 275.

Degree, see Order.
Degrees of freedom, 204.

Delta, Hamilton's operator V, 70, 21

U

See Operator.
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De Moivre's theorem, 27.

Derivative, 63.

Determinants and combinatorial func-
^ tions, 270, 305.

Developable surface, 65 ; circumscribing
confocals, 126 ; related to curve, 135,

139 ; generated by tangent planes
along curve on surface, 142; of twisted
cubic, 267 ; circumscribing quadrics,

280 ; tangent-line, of two quadrics,

282; circumscribing generalized con-

focals, 286.

Development of quaternion function,

79, 85 ; of vector of curve in terms
of arc, 134.

Deviation from osculating curve, 152.

Diaphragm, 217.

Dielectric, 251 et seq.

DifiFerence of two points, 263.

Diflt'erential, 63, 66 ; condition for per-

fect, 74, 86, 214 ; indeterminate, 87 ;

of equation of surface, 142 ; equation
of geodesic, 141, 152; of lines of

curvature, 144, 147 ; of family of

surfaces, 149 ; of curves traced on
surfaces, 287-

Differentiation, chap, vii., 62; general
formula, 66 ; successive, 79 ; with
respect to moving axes, 167 et seq.

;

of deformable elements, 212 ; follow-

ing moving point, 229.

Diffusion of electromagnetic disturb-

ance, 255.

Dilatation in strain, 178.

Direct and inverse similitude, 14.

Directed area, 23 ; angle, 31 ; curva-
ture, 132, 141 ; volume in hyperspace,
304.

Discontinuity in integration, 216.

Displacement, of a body, 18, chap, xii.,

168 ; in strain, 180 ; electric, 250.

Dissipation function, 240, 252.

Dissociative multiplication, 11.

Distortion of elements, 212, 229 ; of

vnscous fluid, 238.

Distributive, multiplication of vector
by scalar, 4 ; by vector, 8 ;

property
of scalar of product, 6 ; of product,

9 ; of diflferential, 66 ; of linear func-

tion, 88 ; multiplication for hyper-
space, 303.

Disturbance in electromagnetic field

propagated by waves or by diffusion,

255.

Divergence of vector, 212.

Divisiou, of vectors reduced to multi-

plication, 11 : homographic, 41, 65,

1.52, 264.

Dodecahedron, 104.

Double points, on wave surface, 248,

261 ; apparent, 292; on Jacobian, 298.

Duality for point symbol, 265.

Dynamical constants of a body, 199,

202, 207.

Dynamics, of a particle, chap, xiv.,

184; of system and rigid body, chap.
XV., 194; of continuous medium, 236;
electro-, 249.

Eight square roots of linear function,

99; umbilical generators, 125; gen-

eralization of, 279, 286 ; generators

which are also normals, 279.

Elastic solid, isotropic; 222, 239; aniso-

tropic, 242 et seq. ; symmetry, 245.

Electro-magnetic theory, 249 et seq. ;

of light, 256.

Element, rate of change of, 212, 229.

Elements of Quaternions referred to,

I, 3, 7, 29, 31, 34, 45, 53, 55, 56, 59,

82, 85, 114, 118, 120, 121, 132, 156,

157, 197, 211, 264; appendix to, 99,

135, 211,

Elimination of a vector, 39, 105.

Ellipse, vector equation of, 63, 82 ;
pro-

jected into circle, 83 ; parallactic, 85

;

aberrational, 85 ; differential equation

of surface generated by, 149 ; related

to astatics, 163 ; locus of feet of per-

pendiculars on generators of cylin-

droid, 166 ; in conical refraction, 261.

Ellipsoid, -^ Hamilton's construction for,

114 ; vector equation of, 152 ; strain,

177.

Ellipsoidal linear function, 178.

Elliptic, logarithmic spiral, 82 ; co-

ordinates, 124 ; functions, 198 ;
gen-

eralized, co-ordinates, 286.

Elongation, 181.

Emanant, 131, 138.

Energy equation, for particle, 184, 187 r

system of particles, 194 ; rigid body,

197 ; for impulses, 200 ; for contin-

uous medium, 239 ; in electro-mag-

netic theory, 251 ; function, for elastic

solid, 243 ; for dielectric, 252.

Envelope, examples, 128, 129 ; differen-

tial equation of, 149, 151 ; wave-
surface as, 248, 257.

Epicycloid, 83.

Equality of vectors, 1 ; vector-arcs, 17

;

points, 263.

Equilibrium, static, 156 ; astatic, 16(».

Equipotential surfaces, 227.

Euler's angles, 33 ; four square identity,

16 ; exponential formulae, 28

;

theorem on curvature, 143; equations
of motion of rigid body, 196 ; of fluid,

230, 238.

Evoked wrench, 201.

Evolutes on polar developable, 139.

* See Linear vector function, the use of an
eUii>8oid being to a great extent superseded.



314 INDEX.

Exact differential, 74, 86, 214.

Excentricity of orbit, 187.

Excess, spherical, .S3.

Expansion, of quaternion function, 79,

85 ; of vector of curve in terms of arc,

134 ; in series of spherical harmonics,
223, 224.

Exponential of quaternion, 28, 34

;

differential of, 86 ; for hyperspace,
.308.

Extreme points on line of congruency,
154.

Families of curves and surfaces, 148.

Family of equipotential surfaces, 227 ;

of curves, q-{f+ty''a, 2S6 ;
q=e^''a,

301.

Five vectors, 43, 44, 54 ;
quaternions,

43, 269 ;
points linearly transformed

into five, 272 ; surfaces, 291.

Flat space, 303 ; symbol of, 308.

Flow of a vector, 231.

Fluid, motion, 72, 229, 236 ; viscous,

238, 240 ; motion of solid in, 241.

Flux through circuit, 233 ; strength of

tube of, 233, 235 ; in electro-magnetic
theory, 249; of radiated energy,

Poynting, 252, 257.

Focal, property of quadrics, Salmon's,

114; form of equation, 116; for

sphero-conic, 120 ; conies on develop-
able, 126

;
points on line of con-

gruency, 153 ; conies related to

astatics, 162.

Foci of central sections of quadric, 129.

Force, moment of, 23 ; in statics, 156
;

in dynamics, 184, 194 ; central, 186
;

impulsive, 200 ; electric and magnetic,

. 251 ; in electro-magnetic field, me-
chanical, 255.

Forces, reduction to two, 158 ; con-

servative, 184, 238 ; of interaction,

194 ; system of forces, see Wrench.
Formula, a, 11 ; b, 8; of differentiation,

66.

Formulae, depending on products of

vectors, chap, in., 23; of trigono-

metry, 25, 30.

Four numbers involved in quaternion,

9 ; squares, identity connecting, 16
;

vectors, identities connecting, 24

;

symmetrical relations for, 42 ; linear

function rendering four vectors par-

allel to, 92 ;
particles equivalent to

rigid body, 199 ; -system of screws,

201) ; consecutive points on tangents
to surface, surface through, 298.

Fourth proportional to three vectors,

31.

Fractions, relations reduced by partial,

122.

Freedom, degrees of, 204.

Fresnel, 163, 262.

Frictional constraint, 190.

Function, anharmonic, of collinear

points, 41, 45, of points in space, 56,

on a conic, 267 ; linear vector, 88

;

elliptic, 198; dissipation, 240; energy,
for elastic solid, 243, for dielectric,

252 ; combinatorial, 270, .304 ; linear

quaternion, 272.

See Linear function. J
Fundamental formulae of trigonometry, ]

plane, 25 ; spherical, 30.

Gate, self-clos'ng, 207.

Gauss, operator, 104 ; measure of cur-

vature. 144, 147 ; integration theorem,
215.

Generalised, normal, 279 ; curvature,

286, 295
;
geodesic, 287.

Generation of ruled quadric, 65 ; of

ellipsoid, 114 ; of ruled surface, 137.

Generators of quadric, 103, 116 ; um-
bilical, 125 ; common, and of linear

complex, 278
;
generalized umbilical,

279, 286 ; eight, are also normals,

279 ; complex of, of doubly infinite

family of quadrics, 301.

Geodesic on cylinder, 137 ; differential

equation of, 141, 152; curvature, 141,

148 ; Joachimstal's theorem, 152

;

motion of particle along, 190 ;
gen-

eralized, 287.

Geometrical meaning of invariants, 98,

288.

Geometry of Three Dimensions, Salmon's,

291, 292, 298.

Geometry, projective, chap, xvii., 263,

308.

Gilbert's theorem on confocals, 124.

Grassmann, 306.

Graves, R. P., Life of Hamilton re-

ferred to, 16, 211.

Gravitating body in field of force, 225.

Green's theorem adapted to quaternions,

219.

Groups, theory of, examples relating to,

80 ; referred to, 104.

Half-line, half-cone, 45.

Harmonic, mean of two vectors, 41, 50,

56, 109 ;
properties of triangle, 45,

of polar and quadric, 50, 109 ;

spherical, 70, 76, 222 et seq.

Hathaway, A. S., 270.

Heaviside, Oliver, 11, 249, 250, 253.

Helix, v^ector equation of, 64, 82 ;

vector twist of, 133 ; constant curva-

ture and torsion, 137 ; osculating,

152; particle moving on, 191.

Herpolhode, 198.

Hessian of surface, 297.

Hexagon, Pascal, 121.
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Hiyhtr Plane Curves, Salmon's, referred
to, 101, 105.

Hodograph, 83, 187, 189.

Homographic, ranges, 41, 42, 264 ;

. locus of line joining corresponding
points, 65 ; locus of mean centre of
points on, 15*2

; screw-systems, 208
;

correspondence of points on twisted
cubics, 285.

Homography, chiastic, 208.
Hooke's law, 243.

Hydrodynamics, 72, 228 et seq.

Hyperbola, 64 ; section of quadric,
rectangular, 111 ; focal, 114.

Hyperboloid, homographic generation,
65, 264 ; locus of transversals, 103,

270 ;
generators of, 1 16 ; Une of

striction of, 140 ; equilibrating forces
on generators of, 158.

Hyperspace, chap, xviii., 303.
Hypocycloid, 83.

Hysteresis, 251.

Icosian calculus, 104.

Identity, Euler's four square, 16 ; con-
necting four vectors, 24 ; live quater-
nions, 269.

Ikosahedron, 104.

Imaginary, of algebra, 3, 20, 58 ; n^^^

roots of quaternions, 28 ; roots and
t

'• axes of linear function, 95, 96, 177 ;

conjugate, vectors, 95, 224, 307

;

united points of linear transforma-
tion, 275, 276.

Impact of two bodies, 203.
Impulse, 200.

Impulsive wrench, 201, 204
; genera-

ting motion of solid in fluid, 241.

Indeterminatenpss of versor of null

i

quaternion, 19; of tensor of bi-

5
' quaternion, 21 ; of a differential, 87 ;

• in solution of equations, 92 ; of axes
- of linear function, 95, 96 ; of square

roots of function, 99 ; in value of

function, 216 ; related to conical
refraction, 248, 260 ; of normal to
plane in hyperspace, 303.

Index-surface, 248, 261.

Induction, magnetic, 250.

Inertia function for rigid body, 196 ;

Binet's theorem on axes of, 197

;

deduced from observed motion, 199,

202, 207 ; related to jqchii, 225.

Infinites in field of integration, 216, 219.

Jutinitv, anharmonic equation of plane
at, 44, of circle at, 54 ; vector to

circular points at, 96, 126, 307

;

vector representing point at, 263
;

equation of plane at, 266.

Inflexion on curve, 83.

Initial positions in astatics, 160.

Inscription of polygon to sphere, 55, 56.

Instantaneous twist-velocity, 170, 201

;

orbit, 188.

Integrability, condition of, 74, 86, 214.
Integrals, line, 73, 215, 219, 231 ; sur-

face, 72, 215, 219, 233 ; variation of,

192, 231, 233.
Intensity of wrench, 163.

Interaction of particles, 194, 200, 236.
Interpretations and formulae, chap iii.,

23 ; for projective geometry, 263
et seq.

Intersection of, line and plane, 35, 267,
269 ; planes, 39, 267, 269, 306 ; two
lines, 39, 267 ; line and sphere, 49

;

spheres, 50, 54 ; confocals, 121, 123,

125
;
quadrics, 285

;
generalized con-

focals, 286 ; curve and complemen-
tary, 292 ; of two surfaces, osculating
plane to curve of, 296.

Invariants, of linear vector functions,

91, 97 ; geometrical meaning of, 98
;

of two functions, 100; derived by
operation of V, 102 ; depending on V,
211 ; of linear quaternion function
274 ; of quadrics and linear trans-

formations, 288.
Inverse, or reciprocal of vector. 1 1 ; of

product 12 ; similitude, 14 ; trans-
formation, 90 ; operations of V, 218.

Inversion, geometrical, 52, correspond-
ing elements in, 69 ; of linear func-
tions, 90; of <p + t<p^ 100; of V, 218;
of linear quaternion function, 273.

Involution on ruled surface, 140.

Irrotational distribution of vectors,

234.

Isothermal surfaces, 227.
Isotropic solid, 222, 239.

Jacobi, differential equations, 86.

Jacobian, or functional determinant,
213 ; of four quadrics, 293 ; of sur-

faces, 295, 298.

Joachimstal's theorem on geodesies,
152.

Joulian waste of energy in electro-mag-
netic field, 252.

K, symbol for conjugate, 12 ; differen-

tial of Kq, 68.

Kelvin, Lord, flow along curve. 231.

Kinematical treatment of curves, 134

;

of surfaces, 137, 145.

Kinematics, chap, xii., 168; of con-
tinuous medium, 228.

See also Motion.
Kinetic energy, of particle, 184, 187 ;

of system of particles, 1 94 ; of rigid

body, 197 ; changed by impulse, 201,

207; of portion of continuous med-
ium, 239.
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Kinetics of a particle, 184 ; of rigid
body, 194 ; of continuous medium,
236.

Knott, C. G., 11.

Lagrange, motion of fluid, 230, 238.
Laplace's operator, 75, 227 ; inversion

of, 220.

Latent roots of linear function, 93, 96

;

linear quaternion function, 274, 276.
Lectures on Quaternions referred to, 1,

7,21, 59, 114, 115, 121, 211.
Lie, Soph us, 86.

Light, electro-magnetic theory, 256.

^ee Optics.

Limiting, points of coaxial spheres, 51
;

ratios, 63.

Line, chap. v. , 35 ; six coordinates of

40 ; inverse of, 53 ; of striction, 138,
140 ; of curvature, 144 ; in point
symbols, 266 ; unaltered by linear

transformation, 272 ; traced on sur-

face, 287, 295.

See Complex, Curve, Generator, Li-
tegral.

Linear, relation connecting four vectors,

5, 24, 25 ; and distributive function,

66; vector function, chap, viii., 88;
related to quadrics, chap, ix., 106

;

to surfaces, 142 ; to astatics, 159 ; to
theory of screws, 164, 205 ; to accel-

eration of point of body, 172; to
strain, 177 ; to vibrations of particle,

186 ; to angular momentum of rigid
body, 196 ; to operator V, 211 ; to
stress, 237, 243 ; to electro-magnetic
field, 251 ; to theory of light, 258 ;

equation of continuity, 230 ; relations
connecting five quaternions, 268

;

quaternion function, 272 et seq. ;

complex, 275 ; transformation, in-

variants of, 288.

Logarithm of a quaternion, 29.

Logarithmic spiral, 82,

Lorentz, H. A., 229, 249, 251.
Lunar theory, example on, 188.

M'Aulay, A., 21, 211, 218.
MacCullagh, index-surface, 248.
Magnetic force, 249; permeability, 251.
Maximum and minimum, 80, 111, 127.
Maxwell, J. Clerk, sense of rotation, 7 ;

curl of vector, 213 ; electro-magnetic
theory, 249.

Mean, point, 5; harmonic, of two
vectors, 41 , 50, 56, 109 ; centre of
corresponding points, 152 ; in point
symbols, 264.

Measure of curvature, 144, 147.

Mechanical force in electro-magnetic
field, 251.

Medium, continuous, 228, 236, 251.

Meusnier's theorem, 141.

Minchin, 183.

Minding's theorem, 162.

Moivre's, de, theorem, 27.

Moment, of force, 23 ; resultant, 156

;

quaternion, 157, 159 ; of momentum,
184, 195, 196 ; of inertia, 196.

Momentum, 184; moment of, 195, 196;
of portion of medium, 236 ; of solid

and fluid, 241.

Monomial equations of circle and sphere,^

55.

Motion, three-bar, 60, 85 ; of point on
curve, 62; generating roulette, 83, 84;.

apparent, 84 ; relative, 171, 174; of

body under no forces, 198 ; of con-
tinuous medium, 228, 236.

Moving axes, 171 ; for curve, 134 ; for
surface, 146; for orbit, 188; for body,
196 ; for electro-magnetic field, 253.

Multiple-valued function, 216 ;
point

on Jacobian, 298.

Multiplication, by scalars, 3 ; distribu-

tive, 9 ; associative, 11; of versors,

versor-arcs, 16 ; symbolical, table for

S,V,K,T,U, 19; hyperspace, 303 ; in

A usdehnungslehre, 306.

Mutual potential, 223.

Mutually rectangular vectors, system
of three, 10; relations connecting two
systems, 33; axes of function, 96, 97;
vectors transformed from, 98 ; nor-
mal to confocals, 123 ; related to curve,.

134; to surface, 146; examples relat-

ing to, 173.

Negative unity, square of unit vector
is, 10, 17 ; square-root of, 3, 20, 58 ;

see Liiaginary.

Non-central surfaces, 117.

Non-commutative, multiplication, 8

;

addition, 16 ; displacements, 168.

Nonion, see Linear vector function.
Normal, to surface, 65, 139, 144 ; to

quadric, 108, 123; to curve, 134;
and tangential resolution of force^

185, 189 ; solutions, 256; generalized,

279 ; generator as well as, 279.

Notation, conventions respecting, 19

;

for projective properties of surfaces,

296.

See Symbol.
Nullifier, 21.

Number of constants of linear func-
tion, 88, 178, 272, 283.

Numerical characteristics, order of
cone and surface, 101 ; of curves, 290.

O'Brien, Rev. M., 11.

Octahedron, regular, 45, 104.

Octonions, 21.

Ohm's law, 251.
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Operator, quaternion as, 14 ; V, 70 tt

seq.^ chap, xvi., 211 ; various ex-

pressions for V, 74, 225 ; applica-
tions of V to Taylor's theorem, 79 ;

to theory of groups, 80, 86 ; to genera-
tion of invariants, 102 ; to strain,

181 ; to calculus of variations, 192 ;

to curvature, 215 ; V^, 75, 220, 227 ;

V-i and V-2, 218; Gaussian, 104;

,
D, analogue of V for projective

I geometry, 296.

\ Opposite of vector, 1.

Optics, examples from, reflection, 19
;

refraction, 22 ; aberration, 85
;

t

astronomical refraction, 85, 175

;

bright curves, 87 ; rotating mirror,

130 ; characteristic surfaces in, 228
;

electro-magnetic theory of, 256.

Orbit, 186 ; instantaneous, 188.

Order of surface, 101 ; of curve, 290
;

of multiple points on Jacobian, 298.

Origin, variable, 157.

Orthogonal spheres, 51, 52, 54 ; con-

focals, 121, 123, 125 ; surfaces, 227.

Oscillation of particle, 185 ; of rigid

body, 207.

Osculating plane, 132, 267, 296 ; circle,

134, 136, 152; sphere, 136; quad-
ric, 144 ; helix, 152 ; curve of inter-

section of two surfaces, 296.

Parabola, 64, 267.

L Paraboloid, condition that general

I
equation should represent, 117;

i_ related to constrained motion, 191.

Parallax, 85.

Parallelepiped, volume of, 22 ; integra-

tion over faces of, 71.

Parameter, vector involving, 62, 64,

65 ; form of V suitable for, 74, 226
;

parameter of distribution, 138.

»
Partial differentiation, 67, 229 ; frac-

tions involving linear functions, 122
;

differential equations, 86, 148, 151,

153 ; involving V, 226.

Particle, dynamics of, chap, xiv., 184.

Particles, system of, 194 ; four,

dynamically equivalent to rigid

body, 199.

Pascal hexagon, 121.

Pedal of quadric, 109 ; of three-system

of screws, 164.

Permanent screws, 209.

Permutation, cyclical, of quaternions
under S, 16 ; cyclical, of linear func-

tions in product, 1(K) ; of symbols in

combinatorial function, 270,

^
Perpendicular, on line, 36 ; on plane,

36 ; to two lines, 40 ; line, to itself,

96 ; on tangent plane, 109 ; on
generator of hyperboloid, 116; on
axis of screw, 156; in astatics, 163;

of three-system, 164 ; of cyclindroid,
166 ; in hyperspace, 303.

Perspective, 46, 278.

Perturbed orbit, 188.

Pfaff, 86.

Philosophical transactions, 101 , 263, 275.
Pitch, of ruled surface, 138 ; of screw,

156; in astatics, 161; of three-system,
164; of two-system, 165; of finite

displacement, 169 ; of impulsive and
of instantaneous, 202.

Plane of quaternion, 13 ; straight line

and, chap, v., 35; polar, for sphere,

50 ; for quadric, 108 ; radical, 50

;

inverse of, 53; cyclic, 113; osculat-

ing, 132; generating developable, 135;
of no virial, 157 ; central, in astatics,

160 ; of elastic symmetry, 245
;

polarised wave in elastic solid, 247 ;

in dielectric, 257 ;
projective symbol

for, 265 ; equation of, 266 ; united, of

linear transformation, 274 ; to qua-
dric, polar, 276.

Pliicker's coordinates of a line repre-

sented by (o-, r), 40.

Poinsot, central axis, 156.

Point, stationary, 63, 83 ; of inflexion,

83 ; circular, 96, 126, 307 ; double,

on wave-surface, 248, 261 ; on
Jacobian, 298 ; apparent, 292 ; sym-
bol, 263 et seq. , 308 ; united, of linear

transformation, 274, 276.

Polar, harmonic, 46 ;
plane of point

with respect to sphere, 50 ; to qua-
dric, 108, 276 ; line to quadric, 109 ;

developable, 136, 139; general theory
of, 296.

Polarised waves in elastic solid, 247 ; in

dielectric, 258.

Pole, see Polar.

Poles, spherical harmonic referred to its,

224.

Polhode, 198.

Polygon, inscribed to sphere, 55 ; in-

scription of, 56 ; loci related to vari-

able, 300.

Potential, operator V'^, 220; expres-

sion for, 223 ; surfaces, equi-, 227 ;

velocity, due to vortices, 235.

Power of vector, 28, 69, 173 ; of quater-

nion, 29 ; of point with respect to

sphere, 49, 50.

Poynting flux of radiated energy, 253 ;

parallel to ray- velocity, 257.

Principal, axes of section of quadric,

111; normal to curve, 134; curva-

ture, 143 ; axes of inertia, 197 ; screws,

209; circuit, 232.

Product, of two vectors defined, 8 ;

associative property of , 1 1 ; reciprocal

of, 12 ; of two quaternions, construc-

tion for, 14 ; conjugate of, 15 ;
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spherical representation of, 16, 31
;

diflferential of, 68 ; of linear functions,

95, 100 ; of vectors in hyperspace,
303 ; Grassmann's, 306.

Projection, of point on plane, 37 ; of

ellipse into circle, 83 ; of vectors, in-

variants relating to, 98 ; of curvature,
141.

Projective geometr}', chap, xvii., 263;
in hyperspace, ,^08.

Propagation of disturbance, 255.

Proportional to three vectors, fourth, 31.

Pure strain, 177 ; converting general
wave-surface into Fresnel's, 262.

Pyramid or system of three planes, ex-

amples on, 38 ; invariant relations

for, 98.

Quadratic equation satisfied by quater-
nion, 29 ; by special linear function,

95 ; quaternion function, 274.
Quadric surfaces, chap, ix., 106; an-
harmonic generation of, 65 ; oscula-

ting surface, 144
; pitch, 165 ; elonga-

tion, 181 ; general, in point symbols,
275 ; inscribed in developable, 279 ;

tangent-line developable for, 282

;

invariants of, 288.

Quadrilateral, spherical, 34 ; complete,
46 ; inscribed to sphere, 56 ; .common
to quadric and linear complex, 274.

Quadrimonial form, for quaternion. 13;
for linear quaternion function, 272.

Quartic, Steiner's, 164, 166 ; symbolic,
of linear quaternion function, 274.

Quaternion, as sum of scalar and vector,

9 ; as product of two vectors, 9 ; as
function of quaternions, 12; as quo-
tient of vectors, 13 ; as operator, 14 ;

as power of vector, 28 ; anharmonic,
56 ; invariants of linear vector func-
tion, 97, 159, 212 ; moment of force,

157 ; as symbol of pohit, 263 ; of
plane, 265 ; function, linear, 272
et seq.

Quotient, of parallel vectors, 3 ; of

vectors, 13.

Radical plane of spheres, 50 ; axis, 51 ;

centre, 52, 53.

Radius of quadric, 107, see Conjugate,
Curvature,

Rank of curve, 292.

Ratio, of vectors, 13 ; of torsion to cur-
vature, constant, 137.

Ray-velocity, 248, 257.

Rayleigh, Lord, 240.

Reaction, 194, 200, 236 ; of constraint,

189, 204.

Reality of roots of self-conjugate vector
function, 96 ; of principal screws,
209 ; of united points, 276.

Reciprocal, of vector, 11 ; of product,
12; of quadric, 110; screws, 204; of
quadric, 276.

Reciprocity, for a surface, relations of,

294.

Reciprocation, quadric of, 266, 309.

Rectangular vectors, system of three
mutually, 10 ; relations connecting
two systems of, 33 ; axes of function,

96, 97 ; vectors transformed from,
98; normals to confocals, 123; re-

' lated to curve, 134 ; to surface, 146
;

examples relating to, 173 ; in hyper-
space, 303.

Rectifying developable, 136, 139.

Reduced wrench, 205.

Reflection in plane mirror, 19 ; in

moving mirror, 130 ; of force for

brachistochrone, 193.

Refraction, 22; astronomical, 85, 175;
conical, 248, 260.

Regression, edge of, 136 ; see Develop-
able.

Regular solids, rotations related to.

104.

Relative, magnitudes and directions of

two vectors, 13 ; motion, 171.

Remainder of a series, 79.

Resolution of vector into components,
chap. III., 23; of linear function,

96, 99 ; of strain, 178 ; of force, tan-
gential and normal, 185 ; of linear

quaternion function, 282.

Resultant of statical forces, 156.

Revolution, cone of, 45 ; cylinder of,

45; condition for quadric of, 114;
tangent cylinder of, 115; motion of

particle on, 190.

Rigid, see Body, Dynamics.
Root, of a quaternion, n^^\ 28 ; differ-

ential of square-, 77 ; of linear vec-

tor function, latent, 93 ; square-, 99 ;

linear function, symbolic, v^'^, of

unity, 105; linear quaternion function,,

latent, of, 272, 276 ; square- of, 282.

Rotation, convention respecting sense
of, 7; conical q.v., l8; forces, 160;
finite displacement, 168 et seq.

;

strain, 177 et seq., 182; of elements,.

212 ; in hyperspace, 307.

Roulette, 83, 84.

Ro3al Irish Academy, see Academy.
Ruled, hyperboloid q.v., 65, 116, 264,
270 ; surfaces, 128, 137 et seq. ; sur-

face, differential equation of, 149,

153.

Russell, Robert, 22, 61.

S symbol for scalar, 6, 19 ; differential

of Sg, 68.

Salmon, 114, see Geometry of Three
Dimensions, Higher Plane Curves.
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Scalar, 3, 6 ; of product, 15 ;
point,

263.

Screws, theory of, applied to, motion
of emanaiit. 137 ; static?, 156, 159,

163 ; displacements, 169 ; dynamics,
2(XJ, 204.

Segments, theorem of six, 46.

Self-conjugate, tetrahedron to sphere,

52, 276 ; vector function, 80, 96, 97 ;

tetrahedron of two quadric?, 277.

Sense of rotation, 7.

Series, exponential, 28 ; Taylor's 79

;

of spherical harmonics, 223, 224.

Sextic curve, Jacobian, 293, 295.

Shaw, J. B., 263.

Shear, 178.

Shortest distance between lines, 40,

138, 154.

Similitude, direct and inverse, 14.

Six, coordinates of line (a, t), 40 ; seg-

ments, 46 ; constants of self-con-

jugate function, 96 ; screws, 166

;

co-reciprocal, 2C6.

Sixteen, constants in linear quater-

nion function, 272 ; square roots of

linear quaternion function, 282.

Solenoidal distribution of vectors, 234.

Solid, harmonic, 70, 76, 222 et scq.
;

elastic, 222, 239, 242 et seq. ; mov-
ing in fluid, 241.

Solution of equations, involving linear

function, 92, 117 ; involving V, 218.

Sphere, chap, vi., 49; inversion of,

52 ; through four points, 53, 55, 58
;

touching four planes, 54 ; and poly-
gon, 55, 56; solid, 59; generating
ellipsoid, 115; osculating, 136; en-

velope of, 151 ; surface generated by,
155 ; of reciprocation, unit, 266.

Spherical, trigonometry, chap, iv., 29

;

excess, 33 ; harmonics, 70, 76, 222
;

curvature, 136; astronomy, exam-
" pies, 174.

Sphero-conic, 118.

Spin-vector, 96, 97 ; of \l/,
97 ; in strain,

181, 182; of element, 212.

Spiral, logarithmic, 82,

Square-root of quaternion, differential

of, 77; of linear function, 99, 112,

124, 177 ; of linear quaternion func-
tion, 282.

Standard form of V, 75 ; of two linear

functions, 100 ; of screw-system, 164
;

of quadric and linear complex, 278.

Statics, chap, xi., 156.

Steiner's quartic, 164, 166.

Stokes's theorem, 215.

Storage of energy, elastic solid, 243

;

electric and magnetic, 252.

Strain, chap, xiii., 177, 212,238; stress

in terms of, 243.

Strength of tube, 233, 235.

Stress, 237 et seq. ; in viscous fluid, 238 ;

in isotropic solid, 239 ; in terms of

f^ train, 243 ; in electro-magnetic field,..

255.

Striction, line of, 138 ; of quadric, 140.

Subtraction of vector, 2.

Sum of vectors, 2 ; of scalar and vector,

9 ; of quaternions, 9 ; of weighted
points, 264; of area vectors in hyper-
space, 306.

Supplemental triangles, 29 ; related to
axes of function and conjugate, 94 ;

to propagation of light, 258.

Surface, in terms of parameters, 64 ;-.

quadric, chap, ix., 106; non-central,.

117; of centres, 125; ruled, 137;.
curvature of, 141 ;

generated by circle,

154 ; equilibrium of chain on, 167 r
motion of particle on, 189; of dis-

continuit}', 216 ; wave-, 248, 261 ; of

centres, generalized, 287 ;
general,

293.

Surfaces, families of, 148; equipotential,

227 ; characteristic, in optics, 228.

Symbol, 19, V, 70, 211 ; see Operator;

{fji., X) for screw, 163 ; t^ and VJ de-

fined, 229 ;
point-, 263, 308. ~

Symbolic, multiplication table, S, V, K,
T, U, 19; vector, V, 75; form of

Taylor's theorem, 79 ; cubic of linear

function, 93, 100 ; case of depressed,

95
;

quartic of linear quaternioa
function, 274.

Symmetry, elastic, 245.

T symbol for tensor, 4, 12, 19 ; differ-

ential of Tq, 68 ; development of

T{p + q),85.
Tait, P. G., referred to, 7, 20, 33, 99,

163, 192, 211, 214, 218.

Tangent, to sphere, 49 ; curve, 63 ;

surface, 65; quadric, 108; confocal,

124; generalized confocals, 280; line

developable of two quadrics, 282

;

conjugate, 295 ; meeting surface in

.

four consecutive points, 298.

Tangential equation of quadric, 110;
and normal components of force, 185,

189 ; transformation, 273 ; equation
of quadric and linear complex, 276.

Taylor's series, 79.

Telescope, examples on composition of

rotations, 175.

Tensor of vector, 4; quaternion, 12;
biquaternion, 20; of sum, develop-
ment of, 85.

Tetrahedra, in perspective, 46 ; corre-

sponding vertices of, joined by gen-

erators of hyperboloid, 103 ; recip-

rocal, of united points of linear

transformation and its conjugate^

274.
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Tetrahedral, coordinates, q.v., 268
;

complex, 302.

Tetrahedron, form\ilae relating to, 42
;

regular, 45, 104 ; anharmonic rela-

tions of point and, 46 ; self-conjugate
to sphere, ,52 ; and sphere, 53 ; forces

on edges of, 158 ; of reference, 268

;

self-conjugate to two quadrics, 277 ;

invariants relating to, 288 ; loci re-

lating to variable, 300.

Thomson and Tait, 200.
Three-bar motion, 60, 85 ; -system of

screws, 164, 205 ;
plane polarised

waves in solid, 248.

Tore, 59.

Torsal generator, 140.

Torse, see Developable.
Torsion, 132, 134.

Total curvature, 148.

Transformation, effected by linear vec-

tor function, 89 ; by self-conjugate
function, 97; Cremona, 101; of screws,
208

;
general linear, 272, et seq. ; ex-

amples of, 285 ; invariants of, 288.
Transversals of lines, 103.

Triangle, and point, harmonic proper-
ties, 45 ; and conic, 48.

Trigonometry, formulae for plane, 25
;

de Moivre's theorem, 27 ; spherical.
29.

Trilinear function, 243.
Trinomial form for linear function, 89

;

for pair of functions, 100.

Tube, motion of particle in rotating,
191 ; in fluid motion, 233, 235.

Twist of curve, vector, 133 ; -velocity,

170, 171, 201.

Twisted, cubic q.v., 93, 104, 109, 123,
133, 172, 267, 278, 285, 293.

Two linear functions, 100; reduction
to, forces, 158 ; angular velocities,

172.

U, symbol for versor, 4, 13, 19 ; diflfer-

erential of Vq, 68; development of
U{p + q), 85.

Umbilical generator, 125 ; generalized,
279, 286.

Unicursal curve, 152.

Unit, of length, 4 ; vector denoted by
Ua, 4.; vectors, system of mutually
iq.v.) rectangular, 10, 96, 98, 134, 146;

point of anharmonic coordinates, 44
;

weight, points of, 263 ; sphere of re-

ciprocation, 266 ; vectors in hj'per-

space, 303.

United, screws, 209
; points of trans-

formation, 274, 276.

V, symbol for vector, 7, 19 ; differ-

ential of Vq, 68.

Variable origin, 157.

Variations, calculus of, 192 ; of inte-

grals, 231, 233.

Vector, as directed right line, 1 ; as

operator, 14 ; arc, 17 ; area, 23

;

of curve, 62 ; of surface, 64 ; func-

tion, linear, 88 ; spin-, 96 ; equation
of confocals, 124 ; emanant, 131 ; as

difference of two points, 263 ; as
point at infinity, 263 ; area, in

hyperspace, 303.

See Linear vector function, etc.

Vectorial algebra, 11.

Velocities, virtual, 157, 254.

Velocity, 63 ; hodograph, 83, 187, 189
;

of emanant, 138 ; twist-, 170, 201
;

relative, 171 ; of particle, 184 e^ seg.

;

area], 186, 188 ; of element of

medium, angular, 212 ; potential,

due to vortex rings, 235 ; wave-,
247, 257 ; ray-, 248, 257.

Versor of vector, 4, 14 ; of quaternion,
13, 16.

Versors, coplanar, chap. iv. ,27. .

Vibration of particle, 185. I

Virial, 157.

Virtual, velocities, 157, 254 ; co-effi-

cient of two screws, 206.

Viscous fluid, 238, 240.

Volume of parallelepiped, 23 ; of tetra-

hedron, 265, 269 ; directed, 304.

Vortex motion, 235, 238.

Wave-surface, 163, 248, 261 ; velocity,

247, 257.

Waves, propagation of disturbance by,
255.

Weierstrass, 199.

Wrench, in statics, 156, 163 ; im-
pulsive, 201, 204; evoked, 204;
reduced, 205.

Zero, square-root of, 29.
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